• Title/Summary/Keyword: e-Workplace

Search Result 164, Processing Time 0.031 seconds

A Study on Pre-school Teachers' Perception of 7 Guidelines of Safety Education: Using IPA Methodology (유아교사가 인식하는 유치원 안전교육 표준안에 대한 연구 : IPA기법을 중심으로)

  • Kang, Min-Jung;Han, Sun-Ah
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.6
    • /
    • pp.661-671
    • /
    • 2017
  • The purpose of this study is to compare and analyze the difference between the importance perceived by pre-school teachers and their actual performance in regards to the 7 Guidelines of Safety Education set out by the Ministry of Education, and through the analysis, to identify the items that need priority support and those that need long-term improvement efforts for exemplary safety education for young children. For this, mean average and standard deviation were calculated and paired sample t-test conducted, and IPA(Importance-Performance Analysis) matrix method was performed to analyze the priority and long-term support items and improvement needs. The study results show differences in all areas and all items in the 7 Guidelines of Safety Education by the MoE in the pre-school teachers' perceived importance and actual performance. Areas and items that are identified to be in need of priority support for exemplary safety education in pre-schools; 2 items under 'Violence and Personal Safety' area and I item under 'Substance and Internet Addictions' area. Areas and items that are identified to be in need of long-term improvement efforts are; 6 items under 'First Aid and Emergency Treatment' area, 1 item under 'Violence and Personal Safety' area, 3 items under 'Workplace Safety Culture' area, 3 items under 'Substance and Internet Addictions' area and 1 item under 'Disaster and Safety' area.

Effects of Subjective Social Status on Meaning of Work (주관적 사회적 지위가 일의 의미에 미치는 영향)

  • Park, Jiyoung;Sohn, Young Woo
    • Science of Emotion and Sensibility
    • /
    • v.21 no.2
    • /
    • pp.43-60
    • /
    • 2018
  • The primary goal of this study is to investigate the effects of individual's subjective social status on meaning of work. We hypothesized that individual's subjective social status, defined as the respect and influence an individual has at her/his workplace, would promote meaning of work. Further, we hypothesized that individual's subjective social status would be more highly associated with meaning of work based on her/his occupation's subjective social status. Using two experimental studies, we found that individual's subjective social status increased meaning of work in American (Experiment 1) and South Korean working adults (Experiment 2). Participant's meaning of work was more influenced by individual subjective social status than occupation subjective social status (Experiment 1). Also, the results from Experiment 2 indicated that objective social status within an organization (i.e., rank) moderated the effects of individual subjective social status on meaning of work, such that the beneficial effects of individual subjective social status on meaning of work were found only for participants with low objective social status. In contrast, meaning of work in participants with high objective social status did not vary depending on subjective social status. We discussed the implications of these results, study limitations, and directions for future research.

Multivariate Analysis of Factors for Search on Suicide Using Social Big Data (소셜 빅 데이터를 활용한 자살검색 요인 다변량 분석)

  • Song, Tae Min;Song, Juyoung;An, Ji-Young;Jin, Dallae
    • Korean Journal of Health Education and Promotion
    • /
    • v.30 no.3
    • /
    • pp.59-73
    • /
    • 2013
  • Objectives: The study is aimed at examining the individual reasons and regional/environmental factors of online search on suicide using social big data to predict practical behaviors related to suicide and to develop an online suicide prevention system on the governmental level. Methods: The study was conducted using suicide-related social big data collected from online news sites, blogs, caf$\acute{e}$s, social network services and message boards between January 1 and December 31, 2011 (321,506 buzzes from users assumed as adults and 67,742 buzzes from those assumed as teenagers). Technical analysis and development of the suicide search prediction model were done using SPSS 20.0, and the structural model, nd multi-group analysis was made using AMOS 20.0. Also, HLM 7.0 was applied for the multilevel model analysis of the determinants of search on suicide by teenagers. Results: A summary of the results of multivariate analysis is as follows. First, search on suicide by adults appeared to increase on days when there were higher number of suicide incidents, higher number of search on drinking, higher divorce rate, lower birth rate and higher average humidity. Second, search on suicide by teenagers rose on days when there were higher number of teenage suicide incidents, higher number of search on stress or drinking and less fine dust particles. Third, the comparison of the results of the structural equation model analysis of search on suicide by adults and teenagers showed that teenagers were more likely to proceed from search on stress to search on sports, drinking and suicide, while adults significantly tended to move from search on drinking to search on suicide. Fourth, the result of the multilevel model analysis of determinants of search on suicide by teenagers showed that monthly teenagers suicide rate and average humidity had positive effect on the amount of search on suicide. Conclusions: The study shows that both adults and teenagers are influenced by various reasons to experience stress and search on suicide on the Internet. Therefore, we need to develop diverse school-level programs that can help relieve teenagers of stress and workplace-level programs to get rid of the work-related stress of adults.

Proteome in Toxicological Assessment of Endocrine Disrupting Chemicals (프로테오믹스를 이용한 내분비계 교란물질 환경독성 연구)

  • 김호승;계명찬
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.2
    • /
    • pp.87-100
    • /
    • 2003
  • It is important to understand the potential human health implications of exposure to environmental chemicals that may act as hormonally active agents. It is necessary to have an understanding of how pharmaceutical and personal care products and other chemicals affect the ecosystem of our planet as well as human health. Endocrine disruption is defined as the ability of a chemical contaminating the workplace or the environment to interfere with homeostasis, development, reproduction, and/or behavior in a living organism or it's offspring. Certain classes of environmentally persistent chemicals such as polychlorinated biphenyls (PCBs), dioxins, furans, and some pesticides can adversely effect the endocrine systems of aquatic life and terrestrial wildlife. Research continues to support the theory of endocrine disruption. However, endocrine disruption researches have been applied to proteomics poorly. Proteomics can be defined as the systematic analysis of proteins for their identity, quantity and function. It could increase the predictability of early drug development and identify non-invasive biomarkers of tonicity or efficacy. Proteome analysis is most commonly accomplished by the combination of two-dimensional gel electrophoresis (2D/E) and MALDI-TOF mass spectrometry (MS) sr protein chip array and SELDI-TOF MS. Proteomics have an opportunity to play an important role in resolving the question of what role endocrine disruptors play in initiating human disease. Proteomics can also play an imfortant role in the evaluation of the risk assessment and use of risk management and risk communication tools required to address public health concerns related to notions of endocrine disruptors. Understanding the need for the proteomics and possessing knowledge of the developing biomakers used to abbess endocrine activity potential will he essential components relevant to the topic of endocrine disruptors.

Characteristics of domestic coals and efficient control of coal dust (국내 석탄광 분진의 특성과 효율적 제어)

  • Kim, Soo Hong;Kwon, Jun Wook;Kim, Sun Myung;Kim, Yun kwang;Jang, Yun Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.4
    • /
    • pp.589-609
    • /
    • 2017
  • This study carried out the density and energy dispersive X-ray spectroscopy and particle size analysis which are the physical characteristics of coal dust by collecting samples of coal dust in the five domestic mines to control the coal dust through ventilation in the workplace for coal mining in the country. This will contribute to a more comfortable working environment by understanding the physical characteristics of the coal dust which is derived from any hard coal produced domestically. In particular, the result of PSA analysis showed that the size of coal dust sample for this study ranged from $0.007{\sim}88.614{\mu}m$ were the particles less than $3.5{\mu}m$, the size range responsible for pneumoconiosis. To observe the flow of coal dust collected on the wind speed, the fallout of coal dust produced by the wind tunnel for the wind was measured and the particle size analysis of coal dust fallout was carried out. In addition, airborne dust is measured according to the mine velocity by using a multi-stage Anderson sampler in the mine where fine dust is generated in a large amount and the wind speed is found out to control the coal dust below $3.5{\mu}m$. In addition, natural ventilation pressure of A mine was calculated to prevent over design of the main fan.

A Study on Exposure Indices for Diesel Engine Exhaust in Forklift Operating Areas (지게차 사용 사업장에서 디젤엔진배출물질 노출지표에 관한 연구)

  • Kim, Sangil;Park, Ji Young;Lee, Kyeongmin;Kim, Seung Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.1
    • /
    • pp.38-47
    • /
    • 2016
  • Objectives: The objective of this study was to determine the exposure levels of forklift operators to diesel engine exhaust(DEE) using black carbon(BC), elemental carbon(EC), and nitrogen dioxide($NO_2$) as indicators. Methods: A total of eight forklift operators in six collection companies were assessed over a period of two months from July to September 2015. BC was measured using a real-time monitor and respirable EC samples were analyzed using the NIOSH method 5040. $NO_2$ samples were collected using a passive badge-type sampler. Results: The geometric mean of BC, EC and $NO_2$ were $3.1-19.1{\mu}g/m^3$, $2.1-23.8{\mu}g/m^3$, and 12.5-166.6 ppb at all companies. When forklifts were operating both outside and inside, BC concentrations increased 2.0-5.6 times. The highest increase was observed when forklifts were operating indoors. The increase in BC concentrations varied by company(company A: 2.0 times, B: 3.2 times, C: 5.6 times, D: 2.1 times, E: 5.1 times, F: 2.6 times). The geometric mean of BC, EC, and $NO_2$ for the forklift operators was $9.6{\mu}g/m^3$, $7.9{\mu}g/m^3$, and 48.9 ppb, respectively. The geometric mean of BC, EC, and $NO_2$ for manufacturing workers was $9.3{\mu}g/m^3$, $0.9{\mu}g/m^3$, and 85.2 ppb, respectively. The mean BC and EC exposure levels for the forklift operators were slightly higher than those for manufacturing workers, but $NO_2$ levels for manufacturing workers were higher than those for the forklift operators(p>0.05). Multiple regression analysis revealed that diesel exhaust emissions standard, forklift weight and forklift manufacturer were the most influential factors in determining worker exposure. Conclusions: In the DEE work environment, workers who perform tasks within the workplace as well as inside forklifts as operators are likely to be exposed to a lack of ventilation. Further study of forklift operators' exposure to DEE indicators should be conducted to include a wider range of occupational and environmental situations, such as collection procedures, seasonal situations, types of fuel used, and number of forklifts.

Health Risk Factors and Ventilation Improvements in Welding Operation at Large-sized Casting Process (대형 주물공정 용접작업장의 건강 위해인자 및 환기 개선)

  • Jung, Jong Hyeon;Jung, Yu Jin;Lee, Sang Man;Lee, Jung Hee;Shon, Byung Hyun;Lim, Hyun Sul
    • Clean Technology
    • /
    • v.20 no.2
    • /
    • pp.171-178
    • /
    • 2014
  • In this study we have examined the health risk factors and analyzing data of laborers working at the welding operation at large-sized casting process. In order to improve the working environment of workplace, an effective ventilation method was proposed after performing CFD (computational fluid dynamics) modeling and measurement of pollutants. As a result of examining the health risk factors of workers, oxidized steel dust is the main pollution source in the company A, welding fume in the companies B and C, and welding fume and oxidized steel dust in the company D. The fume concentration in the workers' breathing zone was $0.05{\sim}4.37mg/m^3$, and the fume concentration in the indoor air at the welding process was $0.13{\sim}7.54mg/m^3$. From a result of CFD, a local exhaust with an exhaust duct adjacent to welding point was found to be most effective in case of the exhaust process. In case of air supply, we found that a desired location of air supply fan would be at the end of the opening. If a standardizing the ventilation system for tunnel-type semi-enclosed space at a large-sized casting process is introduced in welding work places in the future, it would be more effective to protect the health of welding workers working at the casting industry and shipbuilding industry and improve the work environment.

Investigation of the Guidance Levels for Protecting Populations from Chemical Exposure and the Estimation of the Level of Concern Using Acute Toxicity Data (화학사고 시 수용체 보호를 위한 독성끝점 농도와 급성독성 자료를 활용한 우려농도 예측값 조사)

  • Lee, Jiyun;Kim, Sunshin;Yang, Wonho;Yoon, Junheon;Ryu, Jisung;Kim, Jungkon;Ji, Kyunghee
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.1
    • /
    • pp.44-54
    • /
    • 2018
  • Objectives: To protect individuals working at the site as well as the surrounding general population from a chemical accident, several emergency exposure guidance levels have been used to set a level of concern for certain chemicals. However, a level of concern has not been established for many substances that are frequently used or produced in large quantities in Korean workplaces. In the present study, we investigated the guidance levels for protecting populations from chemical exposure and the estimation of level of concern using acute inhalation and oral toxicity data. Methods: The number of chemicals to which emergency exposure guidance levels (e.g., ERPG-2, AEGL-2, PAC-2, and IDLH) can be applied were determined among 822 hazardous chemicals according to the 'Technical Guidelines for the Selection of Accident Scenarios (revised December 2016)'. The ERPG and AEGL values were compared across all three tiers for the 31 substances that appeared on both lists. We examined the degree of difference between the emergency exposure guidance levels and the estimates of level of concern calculated from acute inhalation or acute oral toxicity data. Results: Among the 822 hazardous chemicals, emergency exposure guidance levels can be applied to 359 substances, suggesting that the estimates of level of concern should be calculated using acute toxicity data for 56.3% of the hazardous chemicals. When comparing the concordance rates of ERPG and AEGL for 31 substances, the difference between the two criteria was generally small. However, about 40% of the substances have values diverging by more than three-fold in at least one tier. Such discrepancies may cause interpretation and communication problems in risk management. The emergency exposure guidance levels were similar to the estimates of level of concern calculated using acute inhalation toxicity data, but the differences were significant when using acute oral toxicity data. These results indicate that the level of concern derived from acute oral toxicity data may be insufficient to protect the population in some cases. Conclusion: Our study suggests that the development of standardized guidance values for emergency chemical exposure in the Korean population should be encouraged. It is also necessary to analyze acute toxicity data and fill the information gaps for substances that are important in Korean workplace situations.

Consequence Analysis for Accidental Gas Release in Labs (실험실 가스 누출 시 피해 영향 분석)

  • Jang, Yuri;Jung, Seungho;Park, Kyoshik
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.29-34
    • /
    • 2015
  • Accidents in laboratory dealing with chemicals have constantly occurred. In the case of a gas explosion or an accident related to leakage of chemical materials, the damage is much greater, thereby leading to a serious accident. Especially, the safety of laboratory in University is important because students build up knowledge and skills and accumulate experience as the main researchers. In this paper, 5 gases(CO, $NH_3$, $H_2$, $CH_4$, $N_2$) are selected to model since they are often used in university laboratories. From the scenarios where the gases are released, the diffusion process is estimated and analyzed to predict damage degree by PHAST v.6.7. Internal diffusion process is modeled through FLUENT which is Computational Fluid Dynamics(CFD) tool. Also, we compare indoor damage with outdoor one when discharged to the outside through the laboratory's window. In the modeling results, the outdoor damages for accident scenarios in the results are far less than then of real plants since the vessel usually used in laboratory(i.e. the capacity of the cylinder; 47 L or less) is significantly less than workplace's one(using ton measure). However as shown in the results small amount can have high consequences for indoor accidents.

Insights Into Emissions and Exposures From Use of Industrial-Scale Additive Manufacturing Machines

  • Stefaniak, A.B.;Johnson, A.R.;du Preez, S.;Hammond, D.R.;Wells, J.R.;Ham, J.E.;LeBouf, R.F.;Martin, S.B. Jr.;Duling, M.G.;Bowers, L.N.;Knepp, A.K.;de Beer, D.J.;du Plessis, J.L.
    • Safety and Health at Work
    • /
    • v.10 no.2
    • /
    • pp.229-236
    • /
    • 2019
  • Background: Emerging reports suggest the potential for adverse health effects from exposure to emissions from some additive manufacturing (AM) processes. There is a paucity of real-world data on emissions from AM machines in industrial workplaces and personal exposures among AM operators. Methods: Airborne particle and organic chemical emissions and personal exposures were characterized using real-time and time-integrated sampling techniques in four manufacturing facilities using industrial-scale material extrusion and material jetting AM processes. Results: Using a condensation nuclei counter, number-based particle emission rates (ERs) (number/min) from material extrusion AM machines ranged from $4.1{\times}10^{10}$ (Ultem filament) to $2.2{\times}10^{11}$ [acrylonitrile butadiene styrene and polycarbonate filaments). For these same machines, total volatile organic compound ERs (${\mu}g/min$) ranged from $1.9{\times}10^4$ (acrylonitrile butadiene styrene and polycarbonate) to $9.4{\times}10^4$ (Ultem). For the material jetting machines, the number-based particle ER was higher when the lid was open ($2.3{\times}10^{10}number/min$) than when the lid was closed ($1.5-5.5{\times}10^9number/min$); total volatile organic compound ERs were similar regardless of the lid position. Low levels of acetone, benzene, toluene, and m,p-xylene were common to both AM processes. Carbonyl compounds were detected; however, none were specifically attributed to the AM processes. Personal exposures to metals (aluminum and iron) and eight volatile organic compounds were all below National Institute for Occupational Safety and Health (NIOSH)-recommended exposure levels. Conclusion: Industrial-scale AM machines using thermoplastics and resins released particles and organic vapors into workplace air. More research is needed to understand factors influencing real-world industrial-scale AM process emissions and exposures.