• 제목/요약/키워드: dynamic stiffness matrix

검색결과 253건 처리시간 0.031초

Analytical solution for natural frequency of monopile supported wind turbine towers

  • Rong, Xue-Ning;Xu, Ri-Qing;Wang, Heng-Yu;Feng, Su-Yang
    • Wind and Structures
    • /
    • 제25권5호
    • /
    • pp.459-474
    • /
    • 2017
  • In this study an analytical expression is derived for the natural frequency of the wind turbine towers supported on flexible foundation. The derivation is based on a Euler-Bernoulli beam model where the foundation is represented by a stiffness matrix. Previously the natural frequency of such a model is obtained from numerical or empirical method. The new expression is based on pure physical parameters and thus can be used for a quick assessment of the natural frequencies of both the real turbines and the small-scale models. Furthermore, a relationship between the diagonal and non-diagonal element in the stiffness matrix is introduced, so that the foundation stiffness can be obtained from either the p-y analysis or the loading test. The results of the proposed expression are compared with the measured frequencies of six real or model turbines reported in the literature. The comparison shows that the proposed analytical expression predicts the natural frequency with reasonable accuracy. For two of the model turbines, some errors were observed which might be attributed to the difference between the dynamic and static modulus of saturated soils. The proposed analytical solution is quite simple to use, and it is shown to be more reasonable than the analytical and the empirical formulas available in the literature.

유연도 행렬을 이용한 전단빌딩의 유전자 알고리즘 기반 손상추정 (Damage Detection in Shear Building Based on Genetic Algorithm Using Flexibility Matrix)

  • 나채국;김선필;곽효경
    • 한국전산구조공학회논문집
    • /
    • 제21권1호
    • /
    • pp.1-11
    • /
    • 2008
  • 전단빌딩에 발생한 손상 추정에 있어서 대상 구조물의 물성치를 가정하고 이상화한 모델을 이용한 역해석이 필요하다. 강성행렬을 이용하는 고전적인 손상추정 방법에 비해 유연도 행렬을 이용한 손상추정은 구조물의 저차모드를 이용하기 때문에 비교적 정확한 값을 계산할 수 있기 때문에 더 효과적으로 알려져 있다. 이 논문에서는 손상추정을 위한 알고리즘으로 유전자 알고리즘(Genetic Algorithm, GA)을 도입하였고, 구조 응답에서 취득할 수 있는 유연도 행렬을 이용하여 역해석을 통한 손상추정 기법을 소개하고 있다. 제안된 손상추정 기법은 전단빌딩의 강성에 대한 정확한 정보가 없는 상황에서 전단빌딩의 손상으로 인한 실제 강성변화량을 추정하도록 하였다. 더불어 open source code인 OPENSEES를 이용하여 전단빌딩 수치해석을 통해 제안된 손상추정 기법의 효율성을 검증하였다.

유한요소기법을 이용한 비보존력이 작용하는 보-기둥 구조의 다양한 제변수 변화에 따른 동적 안정성 해석 (Dynamic Stability Analysis of Nonconservative Systems for Variable Parameters using FE Method)

  • 이준석;민병철;김문영
    • 한국전산구조공학회논문집
    • /
    • 제17권4호
    • /
    • pp.351-363
    • /
    • 2004
  • 비보존력을 받는 보-부재의 질량행렬, 탄성강도행릴, circulatory비보존력의 방향변화로 인한 load correction강도행력, 그리고 Winkler 및 Pasternak지반강도행렬을 고려한 운동방정식을 유도하고 divergence 및 flutter에 의한 안정성 해석을 수행한다. 또한 내적 및 외적 감쇠계수를 운동방정식에 포함시킴으로써 감쇠효과를 고려하고, 2차 고유치문제의 해법(quadratic eigen problem solution)을 적용하여 flutter에 미치는 영향을 조사한 후, Beck's column, Leipholz's column 및 Hauger's column에 대하여 비보존력의 방향파라미터 ${\alpha}$에 대한 임계하중의 영향, 내적 및 외적 감쇠계수 및 Winkler 및 Pasternak지반에 의한 임계하중의 영향을 각각 조사한다.

유연복합재 구동축의 동특성에 관한 실험 분석 (Experimental Investigation Into the Dynamic Characteristics of Flexible Matrix Composite Driveshafts)

  • 신응수
    • 한국공작기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.93-98
    • /
    • 2006
  • This study provides a comprehensive experimental study on the dynamic characteristics of a flexible matrix composite(FMC) driveshaft. A primary objective is to verify the analytic results of the FMC drivetrain based on the equivalent complex modulus approach and the classical lamination theory. A test rig has been constructed, which consists of a FMC shaft, a foundation beam, bearings, external dampers and a driving motor. The frequency response functions and transient responses are obtained from the external excitation and the spin-up testings. It turns out that the analytic results are in good agreement with the experimental ones.

유연복합재 구동축의 동특성에 관한 실험 분석 (Experimental Investigation into the Dynamic Characteristics of Flexible Matrix Composite Driveshafts)

  • 신응수;임병수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.123-126
    • /
    • 2005
  • This study provides a comprehensive experimental study on the dynamic characteristics of a flexible matrix composite(FMC) driveshaft. A primary objective is to verify the analytic results of the FMC drivetrain based on the equivalent complex modulus approach and the classical lamination theory. A testrig has been constructed, which consists of a FMC shaft, a foundation beam, bearings, external dampers and a driving motor. The frequency response functions and transient responses are obtained from the external excitation and the spinup testings. It turns out that the analytic results are in good agreement with the experimental ones.

  • PDF

공작기계 주축계의 진동특성해석에 관한 연구 (Dynamic Characteristics Analysis of a Machine-Tool Spindle System)

  • 김석일;곽병만;이후상;정재호
    • 한국정밀공학회지
    • /
    • 제8권2호
    • /
    • pp.57-68
    • /
    • 1991
  • In this study, to analyse the dynamic characteristics of a machine-tool spindle system, the spindle is mathematically represented by a Timoshenko beam including the internal damping of beam material, and each bearing by four bearing coefficients; stiffness and damping coefficients in moment and radial directions. And the dynamic compliance of the system is calculated by introducing the transfer matrix method, and the complex modal analysis method has been applied for the modal parameter identification. The influence of the bearing coefficients, material damping factor and bearing span on the dynamic characteristics of the system is parametrically examined.

  • PDF

동적 구조물의 구조변화에 의한 진동해석 연구 (A Study of Vibration Analysis Due to Structual Changes of Dynamic Structure)

  • 현천성;이기형;정인성
    • 대한기계학회논문집
    • /
    • 제16권11호
    • /
    • pp.2033-2048
    • /
    • 1992
  • 본 연구에서는 탄성체 구조물로 형성된 응용에서 좀더 공통된 상황에 관한 것 이다.유일한 선형해석모델의 규명에 필요한 정보제공을 위하여 충분히 넓은 진동수 범위에 걸쳐 응답을 측정하고, 구조물을 기진시키는 것은 불가능하고 비경제적이며 또 는 일반적으로 바람직하지 못할 것으로 생각된다.

고온소듐 내부유동을 갖는 액체금속로 중간열전달계통 배관에 대한 진동특성 해석 (Vibration Analysis for IHTS Piping System of LMR Conveying Hot Liquid Sodium)

  • 구경회;이형연;이재한
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.386-391
    • /
    • 2001
  • In this paper, the vibration characteristics of IHTS(Intermediate Heat Transfer System) piping system of LMR(Liquid Metal Reactor) conveying hot liquid sodium are investigated to eliminate the pipe supports for economic reasons. To do this, a 3-dimensional straight pipe element and a curved pipe element conveying fluid are formulated using the dynamic stiffness method of the wave approach and coded to be applied to any complex piping system. Using this method, the dynamic characteristics including the natural frequency, the frequency response functions, and the dynamic instability due to the pipe internal flow velocity are analyzed. As one of the design parameters, the vibration energy flow is also analyzed to investigate the disturbance transmission paths for the resonant excitation and the non-resonant excitations.

  • PDF

FRF를 이용한 동적 구조 시스템의 구조추정 및 재해석 (Reanalysis for Correlating and Updating Dynamic Systems Using Frequency Response Functions)

  • 한경봉;박선규
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.49-56
    • /
    • 2004
  • Model updating is a very active research field, in which significant efforts has been invested in recent years. Model updating methodologies are invariably successful when used on noise-free simulated data, but tend to be unpredictable when presented with real experimental data that are-unavoidably-corrupted with uncorrected noise content. In this paper, Reanalysis using frequency response functions for correlating and updating dynamic systems is presented. A transformation matrix is obtained from the relationship between the complex and the normal frequency response functions of a structure. The transformation matrix is employed to calculate the modified damping matrix of the system. The modified mass and stiffness matrices are identified from the normal frequency response functions by using the least squares method. One simulated system is employed to illustrate the applicability of the proposed method. The result indicate that the damping matrix of correlated finite element model can be identified accurately by the proposed method. In addition, the robustness of the new approach uniformly distributed measurement noise Is also addressed.

  • PDF

Comparisons of Elasto-Fiber and Fiber & Bernoulli-Euler reinforced concrete beam-column elements

  • Karaton, Muhammet
    • Structural Engineering and Mechanics
    • /
    • 제51권1호
    • /
    • pp.89-110
    • /
    • 2014
  • In this study, two beam-column elements based on the Elasto-Fiber element theory for reinforced concrete (RC) element have been developed and compared with each other. The first element is based on Elasto Fiber Approach (EFA) was initially developed for steel structures and this theory was applied for RC element in there and the second element is called as Fiber & Bernoulli-Euler element approach (FBEA). In this element, Cubic Hermitian polynomials are used for obtaining stiffness matrix. The beams or columns element in both approaches are divided into a sub-element called the segment for obtaining element stiffness matrix. The internal freedoms of this segment are dynamically condensed to the external freedoms at the ends of the element by using a dynamic substructure technique. Thus, nonlinear dynamic analysis of high RC building can be obtained within short times. In addition to, external loads of the segment are assumed to be distributed along to element. Therefore, damages can be taken account of along to element and redistributions of the loading for solutions. Bossak-${\alpha}$ integration with predicted-corrected method is used for the nonlinear seismic analysis of RC frames. For numerical application, seismic damage analyses for a 4-story frame and an 8-story RC frame with soft-story are obtained to comparisons of RC element according to both approaches. Damages evaluation and propagation in the frame elements are studied and response quantities from obtained both approaches are investigated in the detail.