• Title/Summary/Keyword: dynamic memory access

Search Result 126, Processing Time 0.024 seconds

(PMU (Performance Monitoring Unit)-Based Dynamic XIP(eXecute In Place) Technique for Embedded Systems) (내장형 시스템을 위한 PMU (Performance Monitoring Unit) 기반 동적 XIP (eXecute In Place) 기법)

  • Kim, Dohun;Park, Chanik
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.3
    • /
    • pp.158-166
    • /
    • 2008
  • These days, mobile embedded systems adopt flash memory capable of XIP feature since they can reduce memory usage, power consumption, and software load time. XIP provides direct access to ROM and flash memory for processors. However, using XIP incurs unnecessary degradation of applications' performance because direct access to ROM and flash memory shows more delay than that to main memory. In this paper, we propose a memory management framework, dynamic XIP, which can resolve the performance degradation of using XIP. Using a constrained RAM cache, dynamic XIP can dynamically change XIP region according to page access pattern to reduce performance degradation in execution time or energy consumption resulting from native XIP problem. The proposed framework consists of a page profiler gathering applications' memory access pattern using PMU and an XIP manager deciding that a page is accessed whether in main memory or in flash memory. The proposed framework is implemented and evaluated in Linux kernel. Our evaluation shows that our framework can reduce execution time at most 25% and energy consumption at most 22% compared with using XIP-only case adopted in general mobile embedded systems. Moreover, the evaluation shows that in execution time and energy consumption, our modified LRU algorithm with code page filters can reduce more than at most 90% and 80% respectively compared with applying just existing LRU algorithm to dynamic XIP.

  • PDF

Design of an Automated Testing Tool to Detect Dynamic Memory Access Errors in C Programs (C언어 기반 프로그램의 동적 메모리 접근 오류 테스트 자동화 도구 설계)

  • Cho, Dae-Wan;Oh, Seung-Uk;Kim, Hyeon-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.8
    • /
    • pp.708-720
    • /
    • 2007
  • Memory access errors are frequently occurred in computer programs written in C programming language [1,2]. Accordingly, a number of research works have suggested a wide variety of methods to detect such errors automatically. However, they have one or more of the following problems: inability to detect all memory errors, changing the memory allocation mechanism, and excessive performance overhead. To cope with these problems, in this paper we suggest a new and automated tool to detect dynamic memory access errors in C programs.

Dynamic Data Migration in Hybrid Main Memories for In-Memory Big Data Storage

  • Mai, Hai Thanh;Park, Kyoung Hyun;Lee, Hun Soon;Kim, Chang Soo;Lee, Miyoung;Hur, Sung Jin
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.988-998
    • /
    • 2014
  • For memory-based big data storage, using hybrid memories consisting of both dynamic random-access memory (DRAM) and non-volatile random-access memories (NVRAMs) is a promising approach. DRAM supports low access time but consumes much energy, whereas NVRAMs have high access time but do not need energy to retain data. In this paper, we propose a new data migration method that can dynamically move data pages into the most appropriate memories to exploit their strengths and alleviate their weaknesses. We predict the access frequency values of the data pages and then measure comprehensively the gains and costs of each placement choice based on these predicted values. Next, we compute the potential benefits of all choices for each candidate page to make page migration decisions. Extensive experiments show that our method improves over the existing ones the access response time by as much as a factor of four, with similar rates of energy consumption.

Impact of gate protection silicon nitride film on the sub-quarter micron transistor performances in dynamic random access memory devices

  • Choy, J.-H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.2
    • /
    • pp.47-49
    • /
    • 2004
  • Gate protection $SiN_x$ as an alternative to a conventional re-oxidation process in Dynamic Random Access Memory devices is investigated. This process can not only protect the gate electrode tungsten against oxidation, but also save the thermal budget due to the re-oxidation. The protection $SiN_x$ process is applied to the poly-Si gate, and its device performance is measured and compared with the re-oxidation processed poly-Si gate. The results on the gate dielectric integrity show that etch damage-curing capability of protection $SiN_x$ is comparable to the re-oxidation process. In addition, the hot carrier immunity of the $SiN_x$ deposited gate is superior to that of re-oxidation processed gate.

An efficient Storage Reclamation Algorithm for RISC Parallel Processing (RISC 병렬 처리를 위한 기억공간의 효율적인 활용 알고리즘)

  • 이철원;임인칠
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.9
    • /
    • pp.703-711
    • /
    • 1991
  • In this paper, an efficient storage reclamation algorithm for RISC parallel processing in the object orented programming environments is presented. The memory management for the dynamic memory allocation and the frequent memory access in object oriented programming is the main factor that decreases RISC parallel processing performance. The proposed algorithm can be efficiently allocated the memory space of RISCy computer which is required the frequent memory access, so it can be increased RISC parallel processing performance. The proposed algorithm is verified the efficiency by implementing C language on SUN SPARC(4.3 BSD UNIX).

  • PDF

Macro-Model of Magnetic Tunnel Junction for STT-MRAM including Dynamic Behavior

  • Kim, Kyungmin;Yoo, Changsik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.728-732
    • /
    • 2014
  • Macro-model of magnetic tunnel junction (MTJ) for spin transfer torque magnetic random access memory (STT-MRAM) has been developed. The macro-model can describe the dynamic behavior such as the state change of MTJ as a function of the pulse width of driving current and voltage. The statistical behavior has been included in the model to represent the variation of the MTJ characteristic due to process variation. The macro-model has been developed in Verilog-A.

Automated Method for Detecting OOB Vulnerability of Heap Memory Using Dynamic Symbolic Execution (동적 기호 실행을 이용한 힙 메모리 OOB 취약점 자동 탐지 방법)

  • Kang, Sangyong;Park, Sunghyun;Noh, Bongnam
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.4
    • /
    • pp.919-928
    • /
    • 2018
  • Out-Of-Bounds (OOB) is one of the most powerful vulnerabilities in heap memory. The OOB vulnerability allows an attacker to exploit unauthorized access to confidential information by tricking the length of the array and reading or writing memory of that length. In this paper, we propose a method to automatically detect OOB vulnerabilities in heap memory using dynamic symbol execution and shadow memory table. First, a shadow memory table is constructed by hooking heap memory allocation and release function. Then, when a memory access occurs, it is judged whether OOB can occur by referencing the shadow memory, and a test case for causing a crash is automatically generated if there is a possibility of occurrence. Using the proposed method, if a weak block search is successful, it is possible to generate a test case that induces an OOB. In addition, unlike traditional dynamic symbol execution, exploitation of vulnerabilities is possible without setting clear target points.

Way-set Associative Management for Low Power Hybrid L2 Cache Memory (고성능 저전력 하이브리드 L2 캐시 메모리를 위한 연관사상 집합 관리)

  • Jung, Bo-Sung;Lee, Jung-Hoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.3
    • /
    • pp.125-131
    • /
    • 2018
  • STT-RAM is attracting as a next generation Non-volatile memory for replacing cache memory with low leakage energy, high integration and memory access performance similar to SRAM. However, there is problem of write operations as the other Non_volatile memory. Hybrid cache memory using SRAM and STT-RAM is attracting attention as a cache memory structure with lowe power consumption. Despite this, reducing the leakage energy consumption by the STT-RAM is still lacking access to the Dynamic energy. In this paper, we proposed as energy management method such as a way-selection approach for hybrid L2 cache fo SRAM and STT-RAM and memory selection method of write/read operation. According to the simulation results, the proposed hybrid cache memory reduced the average energy consumption by 40% on SPEC CPU 2006, compared with SRAM cache memory.

Development of Memory Controller for Punctuality Guarantee from Memory-Free Inspection Equipment using DDR2 SDRAM (DDR2 SDRAM을 이용한 비메모리 검사장비에서 정시성을 보장하기 위한 메모리 컨트롤러 개발)

  • Jeon, Min-Ho;Shin, Hyun-Jun;Jeong, Seung-Heui;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.1104-1110
    • /
    • 2011
  • The conventional semiconductor equipment has adopted SRAM module as the test pattern memory, which has a simple design and does not require refreshing. However, SRAM has its disadvantages as it takes up more space as its capacity becomes larger, making it difficult to meet the requirements of large memories and compact size. if DRAM is adopted as the semiconductor inspection equipment, it takes up less space and costs less than SRAM. However, DRAM is also disadvantageous because it requires the memory cell refresh, which is not suitable for the semiconductor examination equipments that require correct timing. Therefore, In this paper, we will proposed an algorithm for punctuality guarantee of memory-free inspection equipment using DDR2 SDRAM. And we will Developed memory controller using punctuality guarantee algorithm. As the results, show that when we adopt the DDR2 SDRAM, we can get the benefits of saving 13.5 times and 5.3 times in cost and space, respectively, compared to the SRAM.

Heavy-Ion Radiation Characteristics of DDR2 Synchronous Dynamic Random Access Memory Fabricated in 56 nm Technology

  • Ryu, Kwang-Sun;Park, Mi-Young;Chae, Jang-Soo;Lee, In;Uchihori, Yukio;Kitamura, Hisashi;Takashima, Takeshi
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.3
    • /
    • pp.315-320
    • /
    • 2012
  • We developed a mass-memory chip by staking 1 Gbit double data rate 2 (DDR2) synchronous dynamic random access memory (SDRAM) memory core up to 4 Gbit storage for future satellite missions which require large storage for data collected during the mission execution. To investigate the resistance of the chip to the space radiation environment, we have performed heavy-ion-driven single event experiments using Heavy Ion Medical Accelerator in Chiba medium energy beam line. The radiation characteristics are presented for the DDR2 SDRAM (K4T1G164QE) fabricated in 56 nm technology. The statistical analyses and comparisons of the characteristics of chips fabricated with previous technologies are presented. The cross-section values for various single event categories were derived up to ~80 $MeVcm^2/mg$. Our comparison of the DDR2 SDRAM, which was fabricated in 56 nm technology node, with previous technologies, implies that the increased degree of integration causes the memory chip to become vulnerable to single-event functional interrupt, but resistant to single-event latch-up.