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For memory-based big data storage, using hybrid 
memories consisting of both dynamic random-access 
memory (DRAM) and non-volatile random-access 
memories (NVRAMs) is a promising approach. DRAM 
supports low access time but consumes much energy, 
whereas NVRAMs have high access time but do not need 
energy to retain data. In this paper, we propose a new data 
migration method that can dynamically move data pages 
into the most appropriate memories to exploit their 
strengths and alleviate their weaknesses. We predict the 
access frequency values of the data pages and then 
measure comprehensively the gains and costs of each 
placement choice based on these predicted values. Next, 
we compute the potential benefits of all choices for each 
candidate page to make page migration decisions. 
Extensive experiments show that our method improves 
over the existing ones the access response time by as much 
as a factor of four, with similar rates of energy 
consumption. 
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I. Introduction 

Dynamic random-access memory (DRAM) has been the 
most important component of main memories in computer 
systems for decades. Nowadays, with the ever-increasing 
amounts of data that require real-time processing, there are 
even higher demands being placed on DRAM to scale-up 
performance rates and reduce the pressure on secondary 
storage devices. For example, besides keeping the indexes, 
storing and processing big (or entire) amounts of data in 
DRAM has become an attractive approach for commercial 
database management applications [1]–[3]. However, despite 
providing a very high access speed, DRAM has a huge 
disadvantage in terms of its energy consumption. For instance, 
in different data centers, about 10% to 30% of the total system 
energy is consumed by DRAM main memories [4]–[5]. The 
reason is that DRAM, as a volatile memory, always requires 
power to retain stored information. Meanwhile, energy 
efficiency is particularly important in large systems where 
energy costs can be remarkably high. Therefore, reducing   
the energy loss substantially while maintaining the high 
performance of the main memories for long-term in-memory 
big data storage and management is a challenging problem. 

To solve such a problem, a recently promising approach is to 
combine non-volatile random-access memories (NVRAMs) 
with DRAM into hybrid main memory systems [6]–[11]. 
Examples of promising NVRAM technologies include phase-
change memory (PRAM), ferroelectric RAM (FRAM), 
magnetoresistive RAM (MRAM), and flash [11]–[17]. The 
major advantage of NVRAMs is that they do not need energy 
for retaining stored data. Thus, in terms of energy efficiency, 
they are more appropriate than DRAM to store big amounts of 
data for a long time period. Researchers also believe that the 
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aforementioned NVRAMs can provide more memory capacity 
and will become cheaper than DRAM in the future [8], [18]– 
[19]. Despite this, their crucial disadvantage is that their reading 
and writing speeds are often much worse than those of DRAM. 
The performance gap is not likely to be negligible soon enough, 
although some leading companies are working on improving 
the performance of NVRAMs [15]–[17]. NVRAMs also need 
higher access energy and have lower write endurance than 
DRAM. As a result, instead of replacing DRAM entirely by 
NVRAMs, designing hybrid main memories that consist of 
both DRAM and NVRAMs is a more favorable approach. In a 
hybrid memory of this kind, fast but energy-inefficient DRAM 
usually constitutes a relatively small part of the total memory, 
with slow but energy-efficient NVRAMs making up the 
remaining part. 

To leverage the attractive attributes while mitigating the 
negative effects of both DRAM and NVRAMs, a number of 
data migration methods have been proposed [6]–[11]. Their 
basic idea is to move “hot” data to DRAM and “cold” data to 
NVRAMs. The underlying purpose is to exploit the fact that 
popular server workloads usually include accesses to only 
relatively small parts of the whole data set or accesses to the 
major part of the data set for only a short time [5]. Here, hot 
data is often defined as data that is accessed frequently, while 
cold data is data that is rarely accessed. The popularly used unit 
of data migration is an operating system page, typically 4 KB 
[6]–[10]. Hot data pages in NVRAMs are migrated to DRAM, 
and cold data pages in DRAM are migrated to NVRAMs. The 
migrations may happen periodically after a fixed amount of 
time or immediately when the access frequency values of some 
pages go beyond a predefined threshold. Different methods use 
different frequency thresholds to categorize data pages into hot 
or cold. For example, in an early and inspiring study about 
hybrid DRAM and PRAM main memory [7], the authors 
recommend setting the threshold value to 1,000. When the 
write frequency of a page becomes a multiple of this threshold, 
it is considered a hot page and will be moved to DRAM if it is 
residing in an NVRAM. In a later study [8], the authors 
suggested that an NVRAM page should be migrated to 
DRAM when its sum of read and write frequency values 
reaches 32. In another work [10], two consecutive accesses 
make an NVRAM page become hot and two consecutive non-
accesses make a DRAM page become cold, triggering 
corresponding migrations. 

The previous methods for data migration in hybrid main 
memories have some limitations as follows. First, the 
migration decision of a data page is made based on its most 
recently measured access frequency value, which is a value 
measured in the past. Their underlying assumption is that the 
access frequency of a page will not change in the future. In fact, 

the access frequency of a page may increase, decrease, or stay 
the same over time. Second, the gains and costs of migrations 
are not comprehensively considered. A data page will generally 
be migrated to another memory when its access frequency 
satisfies a certain threshold. Nonetheless, since no fixed 
threshold value can be good for all workloads all of the time, 
there can be many situations where the cost of migration is 
greater than the gain, yet the migration still happens. Finally, 
previous studies only consider one type of NVRAM in the 
hybrid memories. It is not clear how the data migration should 
be done when multiple types of NVRAMs are used in the 
same system. Different types of NVRAMs have different 
performance, energy, and investment cost characteristics. The 
combination of multiple different NVRAMs in one hybrid 
memory is potentially beneficial for its users. 

In this paper, we propose a new data migration method   
for hybrid DRAM–NVRAMs memories that aims to solve  
the limitations of its predecessors. We target memory-based 
storage systems, such as in-memory databases, where a major 
part of the data (or, all of it in its entirety) is stored in the main 
memory. First, we propose a procedure to predict access 
frequency values of the pages in the near future and use    
the predicted frequency values for making page migration 
decisions. We use a statistical technique to compute the 
predicted frequency values, and then revise if necessary the 
prediction based on automatically learned experience. This 
procedure helps us to catch the patterns of the changing of the 
access frequency to make more accurate decisions. Second,  
we develop a decision-making procedure that measures 
comprehensively the gains and costs of each migration. We 
also use a frequency threshold as in the previous methods, but 
this threshold is no longer the only criteria for deciding the 
page migrations. Instead, we only use the threshold for finding 
candidate hot and cold pages. The migration decisions are then 
made based on the candidate pages’ potential benefits, which 
are computed from their potential gains and costs. Finally, we 
develop our decision-making procedure in a general setting 
where there can be multiple NVRAMs in a hybrid main 
memory, making our method suitable for a broader range of 
applications. We conducted extensive experiments using seven 
real-life and standardized data access workloads. The results 
show that our method can reduce the average access response 
time by up to a factor of four, while maintaining a similar rate 
of energy consumption when compared with existing methods. 

The remainder of this paper is organized as follows. In 
Section II, we introduce promising NVRAM technologies and 
hybrid main memory designs. In Section III, we present our 
data migration method in detail. Experimental results are 
presented in Section IV, followed by a review of related work 
in Section V. Finally, we conclude the paper in Section VI. 
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II. Background 

1. NVRAM Technologies  

As we mentioned in the previous section, PRAM, FRAM, 
MRAM, and flash are currently the most promising NVRAM 
technologies. Among them, PRAM and flash have received  
the greatest attention from the research community as well as 
industry. PRAM is a byte-addressable memory, and the 
performance of PRAM is worse than DRAM by about a factor 
of two for reads and a factor of five to six for writes [12]. 
Recently, a prototype of an 8 Gb PRAM has been announced 
[16]. Flash is another type of non-volatile memory. In this study, 
we consider a special kind of flash memory that is capable of 
being used as a main memory and that can bypass several 
layers of the traditional communication stack, as has been 
introduced in the market [17]. The performance of this special 
kind of new flash is about an order of magnitude worse than 
DRAM and an order of magnitude better than traditional flash 
memory such as solid-state drive (SSD). Both PRAM and 
flash do not consume energy to retain data due to their non-
volatile characteristic. It is also believed that they are more 
scalable than DRAM with multi-level cell (MLC) capability 
and will have considerably lower prices than DRAM in the 
future [8], [18]–[19]. Therefore, they can be used to provide a 
much higher capacity for the memory system than DRAM can 
within the same budget. More detailed descriptions about the 
characteristics, architectures, and principles of operation of 
these memories can be found in many other studies (for 
example, [12], [17]). 

2. Hybrid Main Memory Designs 

There are two general designs for DRAM–NVRAMs hybrid 
memories. The first one, called hierarchical design, is to use 
DRAM as a cache for lower layer NVRAM real storage. The 
second one, called flat design, is to put all memories including 
DRAM and all NVRAMs at the same level. Due to page 
limitation, we omit the descriptions of these two designs here. 
Further information, for those interested, can be found in [6]–
[10]. In general, the flat design is often preferable to the 
hierarchical one, although there is no consensus on which 
design is better [7]–[9]. We think that the two designs 
complement each other and are useful in different cases. 
However, we adopt the flat design in this paper. 

III. Dynamic Data Migration Method 

1. Overview  

Figure 1 shows a sketch of our data migration method. Data  

 Fig. 1. Method overview. 
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is stored in both DRAM and NVRAMs and migrated among 
the memories dynamically during system runtime. We monitor 
the access frequency of the data pages. Then, based on the 
historical frequency values, we predict the near-future access 
frequency of the pages. Predicted frequency values are then 
used for selecting candidate pages for migrations. Next, 
potential benefits of migration choices are computed for each 
candidate page, resulting in a candidate page being migrated to 
the most beneficial memory type. We present the details of our 
method in the following subsections. 

2. Page Access Monitoring 

While the system runs, we monitor the read and write 
frequency values of all data pages for a number of time 
windows in the past. Let d denote the number of time windows 
for which we keep the measured frequency values. Let Wi 
denote the ith time window (i is an integer and –d ≤ i ≤ 0). 
We use negative values for i to indicate that the corresponding 
time windows are in the past. Greater values of i refer to more 
recent time windows where W–1 and W–d are, respectively, the 
most and least recent ones. All time windows have the same 
length. Now, consider a certain data page pj in a time window 
Wi. We use Nr

ms(i, j), Nw
ms(i, j), and Nms(i, j) to represent the 

measured read, write, and access (either read or write) 
frequency values of pj in Wi, respectively. These values are 
stored in a small part of the DRAM. Assume that the page size 
is 4 KB, four bytes are used for each page ID, one byte for each 
frequency value, and d = 5, then the storage overhead for the 
historical frequency data is only 0.34% of the total memory. 

3. Page Access Prediction 

Given historical frequency values, we compute the 
predictive read and write frequency values for the data pages in 
a time window W0 in the future. Note that W0 is the nearest 
future time window, next to the current time point and the time 
window W–1 in the past. Here, a simple prediction strategy used 
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Fig. 2. Simple prediction strategy may fail and statistical 
prediction strategy may be better. 
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in previous data migration methods is to set the predicted value 
the same as the most recently measured one (that is, the value 
measured at W–1). The underlying assumption is that the access 
frequency values of all pages will not change in the future. 
However, in practice, the access frequency of each page can 
vary dynamically over time, either increasing or decreasing or 
staying the same. For example, when a special event happens, 
there will be an increasing need for loading or writing to the 
pages containing the related data during a certain time interval. 
Figure 2 illustrates such a situation when the access frequency 
values (represented by small circles) of a page pj are having an 
increasing trend during the last five time windows. Since the 
most recently measured value Nms(–1, j) is four, a simple 
prediction for the future value at W0, denoted by Nsim(0, j), is 
also four. However, because of the increasing trend, a more 
likely real frequency value, in this situation, is five. 

Therefore, in this paper, we propose to use a statistical model 
named simple linear regression to predict the future access 
frequency values. This model has relatively high prediction 
accuracy and can be computed very quickly. Note that 
although there are more accurate prediction models in 
existence, they are not appropriate due to the increase in 
complexity that they cause, which then results in high 
processing times. As described in [20], the simple linear 
regression model for a list of data points P = {(x1, y1), … ,   
(xv, yv)} has the form yi = β0 + β1xi + ϵi where the observed 
value of the dependent variable yi is composed of a linear 
function, β0 + β1xi, of the explanatory variable xi and an error 
term ϵi. The parameters β0 and β1 are called the intercept 
parameter and slope parameter, respectively. The error term ϵi 
is commonly assumed to follow a Gaussian distribution    
N(0, σ2) for some error variance σ2 [20]. This implies that the 
values yi’s (1 ≤ i ≤ v) are assumed to be observations from the 
random variables Yi ~ N(β0 + β1xi, σ

2), where N denotes a 
Gaussian distribution. Using “least squares” fitting techniques, 
we can obtain the estimates of the parameters β0, β1, and σ2 

denoted by parameters eβ0, eβ1, and eσ2, respectively (please 
refer to [20] for more details). 

Here, eβ1 and eβ0 represent the line y = eβ1 × x + eβ0 that 
approximates the distribution of the points in P. In applying the 
linear regression model to predict the access frequency of a 
certain page pj, we set up P to be the list of d points that 
correspond serially to d time windows from W–d to W–1. More 
specifically, for each point (xi, yi) that corresponds to a time 
window Wt we set xi = t and yi = Nms(t, j), which is the access 
frequency value measured at Wt. Let us consider Fig. 2 again, 
here, the linear regression model is able to catch the increasing 
pattern of the frequency values more correctly. Let Nsta(0, j) 
represent the statistically predicted frequency value by the 
linear regression model at W0. In this example, Nsta(0, j) is five 
and is a better prediction than the value of four that we would 
have obtained using the simpler aforementioned strategy. 

Experience-based strategy switching. Although the statistical 
prediction strategy is often better than the simple prediction 
strategy, there is a case when the latter strategy is better than the 
former. That is, when the statistical strategy mispredicts the 
trend, from increasing to decreasing or from decreasing to 
increasing. To solve this problem, we propose a strategy 
selection procedure that switches between the two prediction 
strategies to choose the better one for getting the final predicted 
value. Our idea is to find the strategy that results in the lower 
prediction error in W–1 and then to use that strategy for the 
prediction of W0. More specifically, after d time windows have 
passed and d corresponding frequency values have been 
measured for each page, our procedure works as follows: 
■ At each time point when we wish to predict a frequency 

value for a page pj, we compute the two values Nsta(0, j)   
and Nsim(0, j) by using the two aforementioned prediction 
strategies. Now, imagine that we have proceeded one time 
window and that the previous W0 has become W–1. Similarly, 
Nsta(0, j) and Nsim(0, j) have become Nsta(–1, j) and Nsim(–1, j), 
respectively. We also have the real value measured at W–1, 
that is Nms(–1, j). 

■ Let esta(j) and esim(j) be the error of statistical prediction and 
error of simple prediction strategies, respectively. We 
compute esta(j) as the absolute difference between the 
statistically predicted value and the real measured value at W–1. 

esta(j) = | Nsta(–1, j) – Nms(–1, j)|.             (1) 

■ Likewise, we compute esim(j) as the absolute difference 
between the simply predicted value and the real measured 
value at W–1. 

 esim(j) = | Nsim(–1, j) – Nms(–1, j)|.           (2) 

■ Next, we compare the two prediction errors to choose the 
strategy that performed better in W–1 to use for W0. Let  
Npre(0, j) be the finally predicted value. If esta(j) is less than 
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esim(j), then we set Npre(0, j) = Nsta(0, j); otherwise, we set 
Npre(0, j) = Nsim(0, j). 
In summary, we jump back and forth between the two 

prediction strategies to find the most reasonable value. 

4. Candidate Page Selection 

After computing predicted read and write frequency values 
for each page, we use these values to choose candidate pages 
for migration. For each memory Mi, let Li = {cp0, … , cpηi–1} 

be the list of candidate pages in Mi . Each element cpk (0 ≤ k ≤  
ηi –1 and ηi = |Li| represents the number of elements in Li) is a 
triple pre pre

r w p , N (0, ), N (0, )k k k   that represents a candidate 
page pk and its predicted read and write frequency values. 

If Mi is DRAM, then we add to Li all “cold” pages in Mi. 
Otherwise (that is, if Mi is an NVRAM), we add to Li all “hot” 
or “potentially hot” pages in Mi. We set a frequency threshold, 
denoted by tf. A page is defined to be cold if the sum of its 
predicted read and write frequency values is less than tf. In 
contrast, a page is defined to be hot if the sum of its predicted 
read and write frequency value is greater than or equal to tf. A 
page is identified to be potentially hot if the time passed from 
the last access until the current time point is greater than the 
time distance between the two most recent accesses. More 
specifically, consider a page pj. Let t–2 and t–1 (where t–2 < t–1) 
denote the second-most recent and most recent time points that 
pj was accessed, respectively. Moreover, let t0 (where t–1 < t0) be 
the current time point. Then, if t0 – t–1 > t–1 – t–2, then pj is 
considered as a potentially hot page. We introduce the notion of 
potentially hot to use recency as a supplementary source of 
information for frequency. We treat both hot and potentially hot 
pages equally, and for brevity, will mention all of them as hot 
pages in our computations. 

The candidate lists of all memories are updated after every 
time window. We sort all candidate pages in each list Li based 
on their “integrated predicted access frequency” values, 
represented by if (cpk) for each candidate page cpk and defined 
as follows. We first compute θi = Tw(Mi)/Tr(Mi), which is a 
balancing constant to reflect the relative difference between the 
time cost to write a page to Mi (denoted by Tw(Mi)) and the 
time cost to read a page from Mi (denoted by Tr(Mi)). Then, if  
θi  ≥ 1, we define 

     pre pre
r wif cp N 0, θ N 0, ;k ik k          (3) 

otherwise, we define 

     pre pre
r w

1
if cp N 0, N 0, .

θk
i

k k           (4) 

If two candidate pages have the same integrated frequency 
values, then the order among them is determined based on their 

Table 1. Notations. 

Notation Descriptions 

n  Number of memories 

M = {M0, … , Mn–1} Set of memories 

Mi i-th memory 

m Number of data pages 

P = {p0, … , pm–1} Set of data pages 

pk kth data pages 

Wt tth time window 
pre pre
r wN ( , ), N ( , )t k t k Predicted read, write frequencies of pk at Wt 

Tr(Mi), Tw(Mi)  Time to read or write a data page from or to Mi

Er(Mi), Ew(Mi)  Energy to read or write a data page from or to Mi

Eid(Mi) Idle energy to retain a data page in Mi  

Tid  Idle time 

 

 
predicted write frequency values. The sorting of the candidate 
pages is done so that cp0 is always the coldest page if Li is the 
candidate list of DRAM, or hottest page if Li is the candidate 
list of an NVRAM. It means that, by frequency values, the 
candidate pages of DRAM are ordered ascendingly, while 
those of NVRAMs are ordered descendingly. 

5. Benefit-Based Dynamic Page Migration 

In this section, we first present the migration of one 
candidate page in one candidate list. Then, we describe the 
migrations of all candidate pages in all candidate lists. Table 1 
shows some notations that are frequently used. 

A. Migration of One Page 

Let n be the number of memories in the system and M = 
{M0, ... , Mn–1} be the set of memories. Without loss of 
generality, assume that M0 is DRAM and that other memories 
are NVRAMs. Consider a data page pk that is residing in a 
memory Mi and is being listed in Mi’s candidate list. There are 
(n – 1) possible choices to migrate pk to a new memory Mj, 
plus one choice to not migrate. The choice of no migration can 
be seen as a special migration choice where i is equal to j. 
Among these n choices, the best one should be the one that 
maximally improves both the access response time and energy 
consumption during the next time window W0 in the future. In 
the following, we propose a procedure to make the best 
migration decision. Our idea is to put pk in the memory that can 
result in the highest potential benefit. The main steps of the 
procedure are described as follows: 
■ Let Ti(k) and Ei(k) denote the total access time and total 
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energy consumption required by the system when pk resides 
in a certain memory Mi during W0, respectively. We first 
compute Ti(k) and Ei(k) based on the predicted read and write 
frequency values of pk and the amounts of time and energy 
required for reading from and writing to Mi as 

pre pre
r r w wT ( ) N (0, ) T (M ) N (0, ) T (M ),i i ik k k        (5) 

pre pre
r r w w

id id

E ( ) N (0, ) E (M ) N (0, ) E (M )

E (M )
i i i

i

k k k

T

   
 

   (6) 

where the meanings of 
pre
rN (0, ),k pre

wN (0, ),k  Tr(Mi), 
Tw(Mi), Er(Mi), Ew(Mi), Tid, and Eid(Mi) are presented in Table 1. 

■ Next, let CT(k, i→j) and CE(k, i→j) be the time and energy 
costs of migrating pk from Mi to Mj, respectively. We 
compute CT(k, i→j) as the sum of the time to read one page 
from Mi and the time to write one page to Mj. Similarly, we 
compute CE(k, i→j) as the sum of the energy to read one page 
from Mi and the energy to write one page to Mj. 

CT(k, i→j) = Tr(Mi) + Tw(Mj),             (7) 

CE(k, i→j) = Er(Mi) + Ew(Mj).             (8) 

In the case of no migration, these costs are zeros. 
■ Then, let BT(k, i→j) and BE(k, i→j) denote the time and 

energy benefits of migrating pk from Mi to Mj. We compute 
the values of BT(k, i→j) and BE(k, i→j) as a fraction between 
the time and energy requirements between the two memories, 
as follows: 

BT(k, i→j) = Ti(k) / (Tj(k) + CT(k, i→j)),       (9) 

BE(k, i→j) = Ei(k) / (Ej(k) + CE(k, i→j)).      (10) 

In the case of no migration, we set BT(k, i→i) = BE(k, i→i) = 1. 
■ Next, we compute the integrated time and energy benefit of 

migrating pk from Mi to Mj, denoted by BTE(k, i→j), by 
multiplying the time and energy benefits. 

BTE(k, i→j) = BT(k, i→j) × BE(k, i→j).      (11) 

■ Now, among the n choices of migration or no migration, we 
choose the one that results in the highest value of BTE(k, i→j). 
In other words, let j* be the memory that corresponds to the 
highest benefit. If j* ≠ i, then we migrate pk from Mi to Mj*. 
Otherwise, we do nothing. Note that there are not always n 
migration choices. When a memory Mj is already full, we do 
not consider migrating pk to Mj and set the corresponding 
BTE(k, i→j) value to zero. 

B. Migration of All Pages 

The procedure MigrateAllCandidates, shown in the next 
page, illustrates the migrations of all candidate pages of all 
memories. The first input parameter is a set L = {L0, … , Ln–1} 
that contains the candidate lists of all memories. The second 
input parameter is the number n of memories. Without loss of 

generality, we assume that L0 is the candidate list of DRAM 
and that Li’s (i > 0) are those of NVRAMs. Let 〈idx(0), … ,  
idx (n – 1)〉 be a list of n variables that corresponds to n 
candidate lists from L0 to Ln–1. Each idx(i) stores the index of 
the candidate page cpidx(i) in the list Li that is being considered 
for migration. In the procedure, we first initialize all idx(i)’s to 
be zeros (Line 1). Then, we consider page migration in a 
round-robin fashion between DRAM and NVRAMs by 
repeating the following two steps: 
■ Consider migrating a DRAM cold page (Lines 3 to 5). Since 

all candidate lists have been sorted as described in Section 
III-4, the candidate page cpidx(0) of the list L0 represents the 
currently “coldest” page in DRAM that has not been 
considered for migration. We compute the index of the best 
memory to put this page by algorithm ComputeBestMem 
(described below) and store this index in a variable named 
bM (Line 3). Then, we check if the best choice is not DRAM 
(that is, bM ≠ 0), then we migrate this candidate page to the 
new memory (Lines 4); otherwise, we do nothing. The value 
of idx(0) is increased by one (Line 5), so that we will 
consider the second coldest page in DRAM in the next loop. 

■ Consider migrating an NVRAM hot page (Lines 6 to 13). 
First, we find the index of the NVRAM that contains the 
hottest candidate page in terms of integrated access frequency 
(Lines 6 to 10). Let hNV and hiF be the variables that store 
the hottest NVRAM’s index and the highest candidate page’s 
frequency value, respectively. We go through the candidate 
lists of all NVRAMs, check the integrated frequency values 
of their currently hottest pages, and keep track of the highest 
frequency value and the corresponding NVRAM’s index. 
Next, given the index of the NVRAM containing the hottest 
candidate page, stored in hNV, we consider the candidate 
page cpidx(hNV) of the candidate list LhNV for migration. To 
make a decision on this page, we compute the index of the 
best memory for placing it by algorithm ComputeBestMem 
(Line 11). If the best choice is not the current memory (bM 
≠ hNV), then we migrate the candidate page to the new 
memory (Lines 12); otherwise, we do nothing. The value of 
idx(hNV) is then raised by one (Line 13). 
The repeat-until loop stops when idx(i) is equal to the size of 

Li for all values of i. In other words, the above two steps are 
repeated until all candidate pages have been considered. 

Procedure MigrateAllCandidates(L, n)  

Input: L = {L0, … , Ln–1} – set of candidate lists 
      n – the number of memories 

1:  Initialize 〈idx(0), ... , idx(n – 1)〉 to zeros 

2:  repeat 

/* 1. Consider migrating a DRAM cold page */ 

3:   bM ← ComputeBestMem(cpidx(0), 0, n) 



994   Hai Thanh Mai et al. ETRI Journal, Volume 36, Number 6, December 2014 
http://dx.doi.org/10.4218/etrij.14.0114.0012 

4:   If bM ≠ 0, migrate cpidx(0) from M0 to MbM 
5:   idx(0) ← idx(0) + 1 

     /* 2. Consider migrating an NVRAM hot page */ 
6:   hNV ← 1 
7:   hiF ← if(cpidx(1)) 

8:   for r = 2 to (n – 1) do 
9:      If if(cpidx(r)) > hiF,  then 

hiF ← if(cpidx(r)) and hNV ← r 

10:  end for 
/*	cpidx(hNV) ∈	 LhNV is now the “hottest” NVRAM page */ 

11:  bM ← ComputeBestMem(cpidx(hNV), hNV, n) 
12:  If bM ≠ hNV, migrate cpidx(hNV) from MhNV to MbM 
13:  idx(hNV) ← idx(hNV) + 1 

14: until idx(i) is equal to the size of Li for all i’s 
 

Algorithm ComputeBestMem(p, i, n) 

Input:  p – a candidate page 
       i – the index of the current memory 
       n – the number of memories 
Output: bM – the index of the best memory for migration 
1:  bM ← 0; maxB ← 0 

2:  for j = 0 to (n – 1) do 
3:    Compute BTE(p, i→j) 
4:    If BTE(p, i→j) > maxB,  then  

maxB ← BTE(p, i→j), bM ← j 

5:  end for 
6:  Return bM 

The algorithm ComputeBestMem computes the best 
memory for migration. The inputs include a candidate page p, 
the index of the current memory i, and the number of 
memories n. The output is the index of the best memory for 
migration bM. Let maxB represent the maximum benefit 
among all migration choices. First, we initialize both bM and  
maxB to be zeros (Line 1). Then, we examine all n choices 
from zero to (n – 1) (Lines 2 to 5). For each choice j, we 
compute the integrated time energy benefit of migrating p from 
Mi to Mj, denoted by BTE(p, i→j) (Line 3). If BTE(p, i→j) is 
greater than maxB, then we update the values of maxB to 
BTE(p, i→j) and bM to j (Lines 4). When the for loop finishes, 
bM contains the index of the memory having the highest 
potential benefit. Finally, we return bM (Line 6). 

The worst case time complexity of algorithm 
ComputeBestMem is O(n) and that of procedure 
MigrateAllCandidates is O(nm), where n is the number of 
memories and m is the number of data pages. We omit the 
detailed analysis here due to page limitation. 

IV. Performance Evaluation 

1. Experimental Setup  

We compared the proposed data migration method with 

previous ones in a hybrid memory system that consists of three 
memory types; namely DRAM, PRAM, and flash. Note that 
the proposed method is also applicable to any hybrid memory 
system having more than three memory types. The timing, 
energy, and density characteristics of these memories are taken 
from [11]–[12] and [19]. The compared methods include 
PDRAM [7], RaPP [8], PaPA [10], LMRU (a comparative 
method that moves the least recently used pages from DRAM 
to NVRAMs and the most recently used pages from NVRAMs 
to DRAM), and PrBDR — the predicted benefit-based 
dynamic data migration method proposed in this paper. 

We used seven different data access traces; namely 
Financial1 (Fi1), Financial2 (Fi2), TPC-C, TPC-H, CH(80-20), 
CH(50-50), and CH(20-80). Traces Fi1 and Fi2 are two real-
life traces from online transaction processing (OLTP) 
applications running at two large financial institutions [21]. 
TPC-C is an OLTP trace from the standard TPC-C benchmark 
[22]. TPC-H is an online analytical processing (OLAP) trace 
from the standard TPC-H benchmark [23]. CH(80-20), 
CH(50-50), and CH(20-80) are three traces from a merged 
OLTP-OLAP benchmark [24]. The notation CH(N1-N2) 
represents a hybrid trace in which N1% of OLTP queries and 
N2% of OLAP queries are used (N1 + N2 = 100%). The 
read/write ratios of these workloads are 23.2/76.8, 82.3/17.7, 
82/18, 100/0, 87.7/12.3, 90.5/9.5, and 93.3/6.7, respectively. 

By default, the sizes of DRAM, PRAM, and flash are 1 GB, 
2 GB, and 2 GB, respectively, when Fi’s traces are used. The 
corresponding sizes are 2 GB, 4 GB, and 4 GB for other traces. 
We use the average response time (that is, average execution 
time) and average energy consumption as the performance 
metrics. The measurement units of these metrics are 
microseconds (us) and millijoules (mJ), respectively. 

2. Result Analysis 

Figures 3 and 4 show the average response time and average 
energy consumption of the methods with various workloads. 
With regard to response time, the proposed method PrBDR is 
about 1.5 to 4.5 times better than the other methods. For 
example, when the workload Fi1 is used, the improvement 
ratios of PrBDR over PDRAM, RaPP, PaPA, and LMRU are 
1.58, 1.51, 1.69, and 1.44, respectively. Meanwhile, when Fi2 
is used, the corresponding ratios are higher at 4.73, 2.31, 4.13, 
and 3.14. The reduced response times of PrBDR come from 
the two main factors that we have done to overcome the 
limitations of previous methods. First, we predict the access 
frequency values of the data pages in the near future, and then 
use the predicted values, instead of the historical values, for 
assessing the need of migrations. Second, we measure fully the 
gains and costs of all migration choices, and then put the data  
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Fig. 3. Measuring average response time with various workloads.
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Fig. 4. Measuring average energy consumption with various 
workloads. 
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pages in the memories having the highest potential benefits, 
instead of simply migrating the pages every time their access 
frequencies go beyond a certain threshold. As for energy 
consumption, PrBDR is at the middle position compared to 
other methods. Specifically, the amounts of energy consumed 
by PrBDR are 15% to 44% lower than those of PDRAM and 
LMRU, while being often similar to, or sometimes 5% to 25% 
higher than, those of RaPP and PaPA. Since the proposed 
method does not always consume the lowest amount of energy, 
it is more suitable to be used in hybrid memory systems where 
response time reduction is preferable. Notice that even though 
some previous methods may consume a little less energy than 
PrBDR, adjusting those methods to use more energy to obtain 
lower response times is very difficult or even impossible since 
finding fixed threshold values that are good for all workloads 
all of the time is not easy. 

Figure 5 presents the performance of the methods when we 
vary the ratio of the memories’ sizes. First of all, Figs. 5(a) and  

Fig. 5. Measuring average response time and energy 
consumption with various ratios of memory sizes. 
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5(b), respectively, demonstrate the response time and energy 
consumption of the methods when we fix the ratio of DRAM 
and change the ratios of PRAM and flash. From Fig. 5(a), we 
see that when the amount of PRAM is raised and the amount 
of flash is reduced, the average response times of all methods 
decrease quickly because both the read and write speeds of 
PRAM are much better than those of flash. However, Fig. 5(b) 
shows that the average energy consumptions of the methods 
decrease only a little for the same trend of changing the 
memory ratio. This is because the system’s energy 
consumption is dominated by the energy consumed by 
accesses to a small number of pages in flash, which have not 
been moved to DRAM or PRAM yet, and the energy 
consumed by DRAM. Next, consider Figs. 5(c) and 5(d) 
where the ratio of PRAM is fixed at one and the ratios of 
DRAM and flash are changed. Due to DRAM’s characteristics, 
the response times decrease while the amounts of energy 
consumption increase significantly for all methods. Note that 
from Figs. 5(a) and 5(c), it is clear that increasing the amount 
of either DRAM or PRAM will result in similarly high 
response time improvements. However, because DRAM is a 
volatile memory, while PRAM is a non-volatile one, using 
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more DRAM results in a high negative impact on energy 
consumption, but using more PRAM does not, as we can 
observe in Figs. 5(b) and 5(d). Now, consider Figs. 5(e) and 
5(f), where we do not alter the ratio of flash but adjust those of 
DRAM and PRAM. Interestingly, even though DRAM is over 
two-times faster than PRAM, the hybrid memory made mostly 
from DRAM has an average response time that is just a little 
lower than the hybrid memory made mostly from PRAM. The 
reason is that most hot pages have been moved to DRAM, and 
the penalty for accesses to hot pages still residing in PRAM is 
low. Nevertheless, there is a fast increase in the amount of 
energy consumption when DRAM occupies larger proportions. 
Overall, the proposed method obtains significantly lower 
response time than the others with various ratios of memory 
sizes. Besides this, the energy consumption rates of our method 
are also similar to or sometimes lower than those of other 
methods. 

V. Related Work 

Qureshi and others present in [6] one of the first studies 
about hybrid main memories where DRAM is combined with 
PRAM. The authors use DRAM as a cache for PRAM and 
manage the data movement at page level. On a page fault, they 
fetch the required page from the hard drive to only DRAM and 
allocate a space for that page in PRAM, but do not write to 
PRAM until the page is evicted from DRAM later. When a 
dirty page is evicted from DRAM, only the dirty data of the 
page is written to PRAM. In an inspiring work [7], Dhiman 
and others locate DRAM and PRAM at the same level (flat 
layout) instead of using DRAM as a cache. An access map is 
managed in PRAM to store the write frequency values of 
pages in PRAM. When the frequency value of a PRAM page 
becomes a multiple of a given threshold, this write-intensive 
page will be swapped with a victim page in DRAM. In [8], 
Ramos and colleagues also organize DRAM and PRAM in a 
flat layout and perform page-based data migration. Both read 
and write frequency values are taken into account when 
making page migration decisions. Pages in DRAM and 
PRAM are arranged into 15 queues based on their access 
frequency values. Among the queues, a page is promoted to a 
higher queue or demoted to a lower queue when its access 
frequency is updated. Whenever the frequency of a PRAM 
page reaches a migration threshold, it is promoted to one of the 
top queues and migrated to DRAM. In [10], the authors 
suggest to use an on-chip DRAM at the upper layer and an off-
chip DRAM together with a PRAM in a flat layout at the lower 
layer. For page migration between DRAM and PRAM, they 
record the access frequency of the pages and place hot pages in 
DRAM and cold pages in PRAM. Here, they categorize a page 

as hot when it has two consecutive accesses or cold when it has 
two consecutive non-accesses. In [9], other authors propose to 
use four unused bits in the page table entry to store write 
information. More recent bits are assigned higher weights to 
exploit temporal locality. Then, instead of looking at individual 
pages, they consider groups of physically continuous pages for 
migration. Average group write frequency values are computed, 
and groups that have such values greater than a hot threshold or 
lower than a cold threshold will be migrated to DRAM or 
PRAM, respectively. Choi and others focus on the flat layout 
of the memories and assume that all page accesses are known 
in advance [14]. Then, they propose an evaluation framework 
to compute the theoretically maximum performance of a 
hybrid main memory. Instead of PRAM, the authors in [25] 
propose a hybrid DRAM and flash SSD memory system. The 
flash memory is treated as a transparent extension of DRAM. 
Applications can access the flash memory via the page-based 
virtual memory interface, but internally, the system works at 
arbitrary-sized objects level. In the virtual memory, each object 
is allocated a whole page even if it needs much less than a page, 
and the object is always placed at the start of the page. DRAM 
is separated into two parts; namely, a page buffer and an object 
cache. An extension of this work is presented in [11], where a 
new kind of flash memory connected through PCIe ports is 
used. 

VI. Conclusion 

We proposed a new dynamic data migration method for 
hybrid DRAM–NVRAMs main memories. Like previous 
studies, we attempt to identify and migrate hot and cold data 
pages among DRAM and NVRAMs to take advantage of 
DRAM’s high speed and NVRAMs’ low power consumption. 
However, to make the process much more effective, our 
method goes further by predicting carefully the data access 
frequency in the near future and computing comprehensively 
the potential benefits of all migration choices before making 
decisions. Our method is the first that overcomes the use of 
fixed migration thresholds, considers fully the gains and costs 
of migrations, and is applicable to hybrid memories that have 
multiple NVRAMs. Experimental results with real-life and 
standardized data show that our method improves over the 
existing ones the average response time by a factor of up to 
four, while keeping a similar rate of energy consumption. 
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