
988 Hai Thanh Mai et al. © 2014 ETRI Journal, Volume 36, Number 6, December 2014
http://dx.doi.org/10.4218/etrij.14.0114.0012

For memory-based big data storage, using hybrid
memories consisting of both dynamic random-access
memory (DRAM) and non-volatile random-access
memories (NVRAMs) is a promising approach. DRAM
supports low access time but consumes much energy,
whereas NVRAMs have high access time but do not need
energy to retain data. In this paper, we propose a new data
migration method that can dynamically move data pages
into the most appropriate memories to exploit their
strengths and alleviate their weaknesses. We predict the
access frequency values of the data pages and then
measure comprehensively the gains and costs of each
placement choice based on these predicted values. Next,
we compute the potential benefits of all choices for each
candidate page to make page migration decisions.
Extensive experiments show that our method improves
over the existing ones the access response time by as much
as a factor of four, with similar rates of energy
consumption.

Keywords: Big data storage, hybrid main memory, in-
memory data management.

Manuscript received Jan. 16, 2014; revised Oct. 15, 2014; accepted Oct. 24, 2014.
This work was supported by the IT R&D Program of MSIP/KEIT, Republic of Korea

(10041709, Development of Key Technologies for Big Data Analysis and Management based
on Next Generation Memory).

Hai Thanh Mai (corresponding author, mhthanh@etri.re.kr), Kyoung Hyun Park
(hareton@etri.re.kr), Hun Soon Lee (hunsoon@etri.re.kr), Chang Soo Kim (cskim7@
etri.re.kr), Miyoung Lee (mylee@etri.re.kr), and Sung Jin Hur (sjheo@etri.re.kr) are with the
SW·Content Research Laboratory, ETRI, Daejeon, Rep. of Korea.

I. Introduction

Dynamic random-access memory (DRAM) has been the
most important component of main memories in computer
systems for decades. Nowadays, with the ever-increasing
amounts of data that require real-time processing, there are
even higher demands being placed on DRAM to scale-up
performance rates and reduce the pressure on secondary
storage devices. For example, besides keeping the indexes,
storing and processing big (or entire) amounts of data in
DRAM has become an attractive approach for commercial
database management applications [1]–[3]. However, despite
providing a very high access speed, DRAM has a huge
disadvantage in terms of its energy consumption. For instance,
in different data centers, about 10% to 30% of the total system
energy is consumed by DRAM main memories [4]–[5]. The
reason is that DRAM, as a volatile memory, always requires
power to retain stored information. Meanwhile, energy
efficiency is particularly important in large systems where
energy costs can be remarkably high. Therefore, reducing
the energy loss substantially while maintaining the high
performance of the main memories for long-term in-memory
big data storage and management is a challenging problem.

To solve such a problem, a recently promising approach is to
combine non-volatile random-access memories (NVRAMs)
with DRAM into hybrid main memory systems [6]–[11].
Examples of promising NVRAM technologies include phase-
change memory (PRAM), ferroelectric RAM (FRAM),
magnetoresistive RAM (MRAM), and flash [11]–[17]. The
major advantage of NVRAMs is that they do not need energy
for retaining stored data. Thus, in terms of energy efficiency,
they are more appropriate than DRAM to store big amounts of
data for a long time period. Researchers also believe that the

Dynamic Data Migration in Hybrid Main
 Memories for In-Memory Big Data Storage

Hai Thanh Mai, Kyoung Hyun Park, Hun Soon Lee, Chang Soo Kim, Miyoung Lee, and Sung Jin Hur

ETRI Journal, Volume 36, Number 6, December 2014 Hai Thanh Mai et al. 989
http://dx.doi.org/10.4218/etrij.14.0114.0012

aforementioned NVRAMs can provide more memory capacity
and will become cheaper than DRAM in the future [8], [18]–
[19]. Despite this, their crucial disadvantage is that their reading
and writing speeds are often much worse than those of DRAM.
The performance gap is not likely to be negligible soon enough,
although some leading companies are working on improving
the performance of NVRAMs [15]–[17]. NVRAMs also need
higher access energy and have lower write endurance than
DRAM. As a result, instead of replacing DRAM entirely by
NVRAMs, designing hybrid main memories that consist of
both DRAM and NVRAMs is a more favorable approach. In a
hybrid memory of this kind, fast but energy-inefficient DRAM
usually constitutes a relatively small part of the total memory,
with slow but energy-efficient NVRAMs making up the
remaining part.

To leverage the attractive attributes while mitigating the
negative effects of both DRAM and NVRAMs, a number of
data migration methods have been proposed [6]–[11]. Their
basic idea is to move “hot” data to DRAM and “cold” data to
NVRAMs. The underlying purpose is to exploit the fact that
popular server workloads usually include accesses to only
relatively small parts of the whole data set or accesses to the
major part of the data set for only a short time [5]. Here, hot
data is often defined as data that is accessed frequently, while
cold data is data that is rarely accessed. The popularly used unit
of data migration is an operating system page, typically 4 KB
[6]–[10]. Hot data pages in NVRAMs are migrated to DRAM,
and cold data pages in DRAM are migrated to NVRAMs. The
migrations may happen periodically after a fixed amount of
time or immediately when the access frequency values of some
pages go beyond a predefined threshold. Different methods use
different frequency thresholds to categorize data pages into hot
or cold. For example, in an early and inspiring study about
hybrid DRAM and PRAM main memory [7], the authors
recommend setting the threshold value to 1,000. When the
write frequency of a page becomes a multiple of this threshold,
it is considered a hot page and will be moved to DRAM if it is
residing in an NVRAM. In a later study [8], the authors
suggested that an NVRAM page should be migrated to
DRAM when its sum of read and write frequency values
reaches 32. In another work [10], two consecutive accesses
make an NVRAM page become hot and two consecutive non-
accesses make a DRAM page become cold, triggering
corresponding migrations.

The previous methods for data migration in hybrid main
memories have some limitations as follows. First, the
migration decision of a data page is made based on its most
recently measured access frequency value, which is a value
measured in the past. Their underlying assumption is that the
access frequency of a page will not change in the future. In fact,

the access frequency of a page may increase, decrease, or stay
the same over time. Second, the gains and costs of migrations
are not comprehensively considered. A data page will generally
be migrated to another memory when its access frequency
satisfies a certain threshold. Nonetheless, since no fixed
threshold value can be good for all workloads all of the time,
there can be many situations where the cost of migration is
greater than the gain, yet the migration still happens. Finally,
previous studies only consider one type of NVRAM in the
hybrid memories. It is not clear how the data migration should
be done when multiple types of NVRAMs are used in the
same system. Different types of NVRAMs have different
performance, energy, and investment cost characteristics. The
combination of multiple different NVRAMs in one hybrid
memory is potentially beneficial for its users.

In this paper, we propose a new data migration method
for hybrid DRAM–NVRAMs memories that aims to solve
the limitations of its predecessors. We target memory-based
storage systems, such as in-memory databases, where a major
part of the data (or, all of it in its entirety) is stored in the main
memory. First, we propose a procedure to predict access
frequency values of the pages in the near future and use
the predicted frequency values for making page migration
decisions. We use a statistical technique to compute the
predicted frequency values, and then revise if necessary the
prediction based on automatically learned experience. This
procedure helps us to catch the patterns of the changing of the
access frequency to make more accurate decisions. Second,
we develop a decision-making procedure that measures
comprehensively the gains and costs of each migration. We
also use a frequency threshold as in the previous methods, but
this threshold is no longer the only criteria for deciding the
page migrations. Instead, we only use the threshold for finding
candidate hot and cold pages. The migration decisions are then
made based on the candidate pages’ potential benefits, which
are computed from their potential gains and costs. Finally, we
develop our decision-making procedure in a general setting
where there can be multiple NVRAMs in a hybrid main
memory, making our method suitable for a broader range of
applications. We conducted extensive experiments using seven
real-life and standardized data access workloads. The results
show that our method can reduce the average access response
time by up to a factor of four, while maintaining a similar rate
of energy consumption when compared with existing methods.

The remainder of this paper is organized as follows. In
Section II, we introduce promising NVRAM technologies and
hybrid main memory designs. In Section III, we present our
data migration method in detail. Experimental results are
presented in Section IV, followed by a review of related work
in Section V. Finally, we conclude the paper in Section VI.

990 Hai Thanh Mai et al. ETRI Journal, Volume 36, Number 6, December 2014
http://dx.doi.org/10.4218/etrij.14.0114.0012

II. Background

1. NVRAM Technologies

As we mentioned in the previous section, PRAM, FRAM,
MRAM, and flash are currently the most promising NVRAM
technologies. Among them, PRAM and flash have received
the greatest attention from the research community as well as
industry. PRAM is a byte-addressable memory, and the
performance of PRAM is worse than DRAM by about a factor
of two for reads and a factor of five to six for writes [12].
Recently, a prototype of an 8 Gb PRAM has been announced
[16]. Flash is another type of non-volatile memory. In this study,
we consider a special kind of flash memory that is capable of
being used as a main memory and that can bypass several
layers of the traditional communication stack, as has been
introduced in the market [17]. The performance of this special
kind of new flash is about an order of magnitude worse than
DRAM and an order of magnitude better than traditional flash
memory such as solid-state drive (SSD). Both PRAM and
flash do not consume energy to retain data due to their non-
volatile characteristic. It is also believed that they are more
scalable than DRAM with multi-level cell (MLC) capability
and will have considerably lower prices than DRAM in the
future [8], [18]–[19]. Therefore, they can be used to provide a
much higher capacity for the memory system than DRAM can
within the same budget. More detailed descriptions about the
characteristics, architectures, and principles of operation of
these memories can be found in many other studies (for
example, [12], [17]).

2. Hybrid Main Memory Designs

There are two general designs for DRAM–NVRAMs hybrid
memories. The first one, called hierarchical design, is to use
DRAM as a cache for lower layer NVRAM real storage. The
second one, called flat design, is to put all memories including
DRAM and all NVRAMs at the same level. Due to page
limitation, we omit the descriptions of these two designs here.
Further information, for those interested, can be found in [6]–
[10]. In general, the flat design is often preferable to the
hierarchical one, although there is no consensus on which
design is better [7]–[9]. We think that the two designs
complement each other and are useful in different cases.
However, we adopt the flat design in this paper.

III. Dynamic Data Migration Method

1. Overview

Figure 1 shows a sketch of our data migration method. Data

 Fig. 1. Method overview.

Non-volatile

Volatile

DRAM

Flash PRAM

Data movement

Page access
monitoring

D
ur

in
g

sy
st

em
 r

un
ti

m
e

Page access
prediction

Candidate page
selection

Benefit-based
dynamic page

migration
…

Data Data

Data

is stored in both DRAM and NVRAMs and migrated among
the memories dynamically during system runtime. We monitor
the access frequency of the data pages. Then, based on the
historical frequency values, we predict the near-future access
frequency of the pages. Predicted frequency values are then
used for selecting candidate pages for migrations. Next,
potential benefits of migration choices are computed for each
candidate page, resulting in a candidate page being migrated to
the most beneficial memory type. We present the details of our
method in the following subsections.

2. Page Access Monitoring

While the system runs, we monitor the read and write
frequency values of all data pages for a number of time
windows in the past. Let d denote the number of time windows
for which we keep the measured frequency values. Let Wi
denote the ith time window (i is an integer and –d ≤ i ≤ 0).
We use negative values for i to indicate that the corresponding
time windows are in the past. Greater values of i refer to more
recent time windows where W–1 and W–d are, respectively, the
most and least recent ones. All time windows have the same
length. Now, consider a certain data page pj in a time window
Wi. We use Nr

ms(i, j), Nw
ms(i, j), and Nms(i, j) to represent the

measured read, write, and access (either read or write)
frequency values of pj in Wi, respectively. These values are
stored in a small part of the DRAM. Assume that the page size
is 4 KB, four bytes are used for each page ID, one byte for each
frequency value, and d = 5, then the storage overhead for the
historical frequency data is only 0.34% of the total memory.

3. Page Access Prediction

Given historical frequency values, we compute the
predictive read and write frequency values for the data pages in
a time window W0 in the future. Note that W0 is the nearest
future time window, next to the current time point and the time
window W–1 in the past. Here, a simple prediction strategy used

ETRI Journal, Volume 36, Number 6, December 2014 Hai Thanh Mai et al. 991
http://dx.doi.org/10.4218/etrij.14.0114.0012

Fig. 2. Simple prediction strategy may fail and statistical
prediction strategy may be better.

Nearest measured
frequency Nms (–1, j)

Next time windowCurrent time point Time windows

A
cc

es
s

fr
eq

ue
nc

y

Page pj

0

1
2
3
4
5
6

Simply
predicted
frequency
Nsim(0, j)

Statistically
predicted
frequency
Nsta(0, j)

Potential real
frequency

W–5 W–4 W–3 W–2 W–1 W0 Time

Linear regression
y = eβ1× x + eβ0

in previous data migration methods is to set the predicted value
the same as the most recently measured one (that is, the value
measured at W–1). The underlying assumption is that the access
frequency values of all pages will not change in the future.
However, in practice, the access frequency of each page can
vary dynamically over time, either increasing or decreasing or
staying the same. For example, when a special event happens,
there will be an increasing need for loading or writing to the
pages containing the related data during a certain time interval.
Figure 2 illustrates such a situation when the access frequency
values (represented by small circles) of a page pj are having an
increasing trend during the last five time windows. Since the
most recently measured value Nms(–1, j) is four, a simple
prediction for the future value at W0, denoted by Nsim(0, j), is
also four. However, because of the increasing trend, a more
likely real frequency value, in this situation, is five.

Therefore, in this paper, we propose to use a statistical model
named simple linear regression to predict the future access
frequency values. This model has relatively high prediction
accuracy and can be computed very quickly. Note that
although there are more accurate prediction models in
existence, they are not appropriate due to the increase in
complexity that they cause, which then results in high
processing times. As described in [20], the simple linear
regression model for a list of data points P = {(x1, y1), … ,
(xv, yv)} has the form yi = β0 + β1xi + ϵi where the observed
value of the dependent variable yi is composed of a linear
function, β0 + β1xi, of the explanatory variable xi and an error
term ϵi. The parameters β0 and β1 are called the intercept
parameter and slope parameter, respectively. The error term ϵi
is commonly assumed to follow a Gaussian distribution
N(0, σ2) for some error variance σ2 [20]. This implies that the
values yi’s (1 ≤ i ≤ v) are assumed to be observations from the
random variables Yi ~ N(β0 + β1xi, σ

2), where N denotes a
Gaussian distribution. Using “least squares” fitting techniques,
we can obtain the estimates of the parameters β0, β1, and σ2

denoted by parameters eβ0, eβ1, and eσ2, respectively (please
refer to [20] for more details).

Here, eβ1 and eβ0 represent the line y = eβ1 × x + eβ0 that
approximates the distribution of the points in P. In applying the
linear regression model to predict the access frequency of a
certain page pj, we set up P to be the list of d points that
correspond serially to d time windows from W–d to W–1. More
specifically, for each point (xi, yi) that corresponds to a time
window Wt we set xi = t and yi = Nms(t, j), which is the access
frequency value measured at Wt. Let us consider Fig. 2 again,
here, the linear regression model is able to catch the increasing
pattern of the frequency values more correctly. Let Nsta(0, j)
represent the statistically predicted frequency value by the
linear regression model at W0. In this example, Nsta(0, j) is five
and is a better prediction than the value of four that we would
have obtained using the simpler aforementioned strategy.

Experience-based strategy switching. Although the statistical
prediction strategy is often better than the simple prediction
strategy, there is a case when the latter strategy is better than the
former. That is, when the statistical strategy mispredicts the
trend, from increasing to decreasing or from decreasing to
increasing. To solve this problem, we propose a strategy
selection procedure that switches between the two prediction
strategies to choose the better one for getting the final predicted
value. Our idea is to find the strategy that results in the lower
prediction error in W–1 and then to use that strategy for the
prediction of W0. More specifically, after d time windows have
passed and d corresponding frequency values have been
measured for each page, our procedure works as follows:
■ At each time point when we wish to predict a frequency

value for a page pj, we compute the two values Nsta(0, j)
and Nsim(0, j) by using the two aforementioned prediction
strategies. Now, imagine that we have proceeded one time
window and that the previous W0 has become W–1. Similarly,
Nsta(0, j) and Nsim(0, j) have become Nsta(–1, j) and Nsim(–1, j),
respectively. We also have the real value measured at W–1,
that is Nms(–1, j).

■ Let esta(j) and esim(j) be the error of statistical prediction and
error of simple prediction strategies, respectively. We
compute esta(j) as the absolute difference between the
statistically predicted value and the real measured value at W–1.

esta(j) = | Nsta(–1, j) – Nms(–1, j)|. (1)

■ Likewise, we compute esim(j) as the absolute difference
between the simply predicted value and the real measured
value at W–1.

 esim(j) = | Nsim(–1, j) – Nms(–1, j)|. (2)

■ Next, we compare the two prediction errors to choose the
strategy that performed better in W–1 to use for W0. Let
Npre(0, j) be the finally predicted value. If esta(j) is less than

992 Hai Thanh Mai et al. ETRI Journal, Volume 36, Number 6, December 2014
http://dx.doi.org/10.4218/etrij.14.0114.0012

esim(j), then we set Npre(0, j) = Nsta(0, j); otherwise, we set
Npre(0, j) = Nsim(0, j).
In summary, we jump back and forth between the two

prediction strategies to find the most reasonable value.

4. Candidate Page Selection

After computing predicted read and write frequency values
for each page, we use these values to choose candidate pages
for migration. For each memory Mi, let Li = {cp0, … , cpηi–1}

be the list of candidate pages in Mi . Each element cpk (0 ≤ k ≤
ηi –1 and ηi = |Li| represents the number of elements in Li) is a
triple pre pre

r w p , N (0,), N (0,)k k k  that represents a candidate
page pk and its predicted read and write frequency values.

If Mi is DRAM, then we add to Li all “cold” pages in Mi.
Otherwise (that is, if Mi is an NVRAM), we add to Li all “hot”
or “potentially hot” pages in Mi. We set a frequency threshold,
denoted by tf. A page is defined to be cold if the sum of its
predicted read and write frequency values is less than tf. In
contrast, a page is defined to be hot if the sum of its predicted
read and write frequency value is greater than or equal to tf. A
page is identified to be potentially hot if the time passed from
the last access until the current time point is greater than the
time distance between the two most recent accesses. More
specifically, consider a page pj. Let t–2 and t–1 (where t–2 < t–1)
denote the second-most recent and most recent time points that
pj was accessed, respectively. Moreover, let t0 (where t–1 < t0) be
the current time point. Then, if t0 – t–1 > t–1 – t–2, then pj is
considered as a potentially hot page. We introduce the notion of
potentially hot to use recency as a supplementary source of
information for frequency. We treat both hot and potentially hot
pages equally, and for brevity, will mention all of them as hot
pages in our computations.

The candidate lists of all memories are updated after every
time window. We sort all candidate pages in each list Li based
on their “integrated predicted access frequency” values,
represented by if (cpk) for each candidate page cpk and defined
as follows. We first compute θi = Tw(Mi)/Tr(Mi), which is a
balancing constant to reflect the relative difference between the
time cost to write a page to Mi (denoted by Tw(Mi)) and the
time cost to read a page from Mi (denoted by Tr(Mi)). Then, if
θi ≥ 1, we define

     pre pre
r wif cp N 0, θ N 0, ;k ik k  (3)

otherwise, we define

     pre pre
r w

1
if cp N 0, N 0, .

θk
i

k k   (4)

If two candidate pages have the same integrated frequency
values, then the order among them is determined based on their

Table 1. Notations.

Notation Descriptions

n Number of memories

M = {M0, … , Mn–1} Set of memories

Mi i-th memory

m Number of data pages

P = {p0, … , pm–1} Set of data pages

pk kth data pages

Wt tth time window
pre pre
r wN (,), N (,)t k t k Predicted read, write frequencies of pk at Wt

Tr(Mi), Tw(Mi) Time to read or write a data page from or to Mi

Er(Mi), Ew(Mi) Energy to read or write a data page from or to Mi

Eid(Mi) Idle energy to retain a data page in Mi

Tid Idle time

predicted write frequency values. The sorting of the candidate
pages is done so that cp0 is always the coldest page if Li is the
candidate list of DRAM, or hottest page if Li is the candidate
list of an NVRAM. It means that, by frequency values, the
candidate pages of DRAM are ordered ascendingly, while
those of NVRAMs are ordered descendingly.

5. Benefit-Based Dynamic Page Migration

In this section, we first present the migration of one
candidate page in one candidate list. Then, we describe the
migrations of all candidate pages in all candidate lists. Table 1
shows some notations that are frequently used.

A. Migration of One Page

Let n be the number of memories in the system and M =
{M0, ... , Mn–1} be the set of memories. Without loss of
generality, assume that M0 is DRAM and that other memories
are NVRAMs. Consider a data page pk that is residing in a
memory Mi and is being listed in Mi’s candidate list. There are
(n – 1) possible choices to migrate pk to a new memory Mj,
plus one choice to not migrate. The choice of no migration can
be seen as a special migration choice where i is equal to j.
Among these n choices, the best one should be the one that
maximally improves both the access response time and energy
consumption during the next time window W0 in the future. In
the following, we propose a procedure to make the best
migration decision. Our idea is to put pk in the memory that can
result in the highest potential benefit. The main steps of the
procedure are described as follows:
■ Let Ti(k) and Ei(k) denote the total access time and total

ETRI Journal, Volume 36, Number 6, December 2014 Hai Thanh Mai et al. 993
http://dx.doi.org/10.4218/etrij.14.0114.0012

energy consumption required by the system when pk resides
in a certain memory Mi during W0, respectively. We first
compute Ti(k) and Ei(k) based on the predicted read and write
frequency values of pk and the amounts of time and energy
required for reading from and writing to Mi as

pre pre
r r w wT () N (0,) T (M) N (0,) T (M),i i ik k k    (5)

pre pre
r r w w

id id

E () N (0,) E (M) N (0,) E (M)

E (M)
i i i

i

k k k

T

   
 

 (6)

where the meanings of
pre
rN (0,),k pre

wN (0,),k Tr(Mi),
Tw(Mi), Er(Mi), Ew(Mi), Tid, and Eid(Mi) are presented in Table 1.

■ Next, let CT(k, i→j) and CE(k, i→j) be the time and energy
costs of migrating pk from Mi to Mj, respectively. We
compute CT(k, i→j) as the sum of the time to read one page
from Mi and the time to write one page to Mj. Similarly, we
compute CE(k, i→j) as the sum of the energy to read one page
from Mi and the energy to write one page to Mj.

CT(k, i→j) = Tr(Mi) + Tw(Mj), (7)

CE(k, i→j) = Er(Mi) + Ew(Mj). (8)

In the case of no migration, these costs are zeros.
■ Then, let BT(k, i→j) and BE(k, i→j) denote the time and

energy benefits of migrating pk from Mi to Mj. We compute
the values of BT(k, i→j) and BE(k, i→j) as a fraction between
the time and energy requirements between the two memories,
as follows:

BT(k, i→j) = Ti(k) / (Tj(k) + CT(k, i→j)), (9)

BE(k, i→j) = Ei(k) / (Ej(k) + CE(k, i→j)). (10)

In the case of no migration, we set BT(k, i→i) = BE(k, i→i) = 1.
■ Next, we compute the integrated time and energy benefit of

migrating pk from Mi to Mj, denoted by BTE(k, i→j), by
multiplying the time and energy benefits.

BTE(k, i→j) = BT(k, i→j) × BE(k, i→j). (11)

■ Now, among the n choices of migration or no migration, we
choose the one that results in the highest value of BTE(k, i→j).
In other words, let j* be the memory that corresponds to the
highest benefit. If j* ≠ i, then we migrate pk from Mi to Mj*.
Otherwise, we do nothing. Note that there are not always n
migration choices. When a memory Mj is already full, we do
not consider migrating pk to Mj and set the corresponding
BTE(k, i→j) value to zero.

B. Migration of All Pages

The procedure MigrateAllCandidates, shown in the next
page, illustrates the migrations of all candidate pages of all
memories. The first input parameter is a set L = {L0, … , Ln–1}
that contains the candidate lists of all memories. The second
input parameter is the number n of memories. Without loss of

generality, we assume that L0 is the candidate list of DRAM
and that Li’s (i > 0) are those of NVRAMs. Let 〈idx(0), … ,
idx (n – 1)〉 be a list of n variables that corresponds to n
candidate lists from L0 to Ln–1. Each idx(i) stores the index of
the candidate page cpidx(i) in the list Li that is being considered
for migration. In the procedure, we first initialize all idx(i)’s to
be zeros (Line 1). Then, we consider page migration in a
round-robin fashion between DRAM and NVRAMs by
repeating the following two steps:
■ Consider migrating a DRAM cold page (Lines 3 to 5). Since

all candidate lists have been sorted as described in Section
III-4, the candidate page cpidx(0) of the list L0 represents the
currently “coldest” page in DRAM that has not been
considered for migration. We compute the index of the best
memory to put this page by algorithm ComputeBestMem
(described below) and store this index in a variable named
bM (Line 3). Then, we check if the best choice is not DRAM
(that is, bM ≠ 0), then we migrate this candidate page to the
new memory (Lines 4); otherwise, we do nothing. The value
of idx(0) is increased by one (Line 5), so that we will
consider the second coldest page in DRAM in the next loop.

■ Consider migrating an NVRAM hot page (Lines 6 to 13).
First, we find the index of the NVRAM that contains the
hottest candidate page in terms of integrated access frequency
(Lines 6 to 10). Let hNV and hiF be the variables that store
the hottest NVRAM’s index and the highest candidate page’s
frequency value, respectively. We go through the candidate
lists of all NVRAMs, check the integrated frequency values
of their currently hottest pages, and keep track of the highest
frequency value and the corresponding NVRAM’s index.
Next, given the index of the NVRAM containing the hottest
candidate page, stored in hNV, we consider the candidate
page cpidx(hNV) of the candidate list LhNV for migration. To
make a decision on this page, we compute the index of the
best memory for placing it by algorithm ComputeBestMem
(Line 11). If the best choice is not the current memory (bM
≠ hNV), then we migrate the candidate page to the new
memory (Lines 12); otherwise, we do nothing. The value of
idx(hNV) is then raised by one (Line 13).
The repeat-until loop stops when idx(i) is equal to the size of

Li for all values of i. In other words, the above two steps are
repeated until all candidate pages have been considered.

Procedure MigrateAllCandidates(L, n)

Input: L = {L0, … , Ln–1} – set of candidate lists
 n – the number of memories

1: Initialize 〈idx(0), ... , idx(n – 1)〉 to zeros

2: repeat

/* 1. Consider migrating a DRAM cold page */

3: bM ← ComputeBestMem(cpidx(0), 0, n)

994 Hai Thanh Mai et al. ETRI Journal, Volume 36, Number 6, December 2014
http://dx.doi.org/10.4218/etrij.14.0114.0012

4: If bM ≠ 0, migrate cpidx(0) from M0 to MbM
5: idx(0) ← idx(0) + 1

 /* 2. Consider migrating an NVRAM hot page */
6: hNV ← 1
7: hiF ← if(cpidx(1))

8: for r = 2 to (n – 1) do
9: If if(cpidx(r)) > hiF, then

hiF ← if(cpidx(r)) and hNV ← r

10: end for
/*	cpidx(hNV) ∈	 LhNV is now the “hottest” NVRAM page */

11: bM ← ComputeBestMem(cpidx(hNV), hNV, n)
12: If bM ≠ hNV, migrate cpidx(hNV) from MhNV to MbM
13: idx(hNV) ← idx(hNV) + 1

14: until idx(i) is equal to the size of Li for all i’s

Algorithm ComputeBestMem(p, i, n)

Input: p – a candidate page
 i – the index of the current memory
 n – the number of memories
Output: bM – the index of the best memory for migration
1: bM ← 0; maxB ← 0

2: for j = 0 to (n – 1) do
3: Compute BTE(p, i→j)
4: If BTE(p, i→j) > maxB, then

maxB ← BTE(p, i→j), bM ← j

5: end for
6: Return bM

The algorithm ComputeBestMem computes the best
memory for migration. The inputs include a candidate page p,
the index of the current memory i, and the number of
memories n. The output is the index of the best memory for
migration bM. Let maxB represent the maximum benefit
among all migration choices. First, we initialize both bM and
maxB to be zeros (Line 1). Then, we examine all n choices
from zero to (n – 1) (Lines 2 to 5). For each choice j, we
compute the integrated time energy benefit of migrating p from
Mi to Mj, denoted by BTE(p, i→j) (Line 3). If BTE(p, i→j) is
greater than maxB, then we update the values of maxB to
BTE(p, i→j) and bM to j (Lines 4). When the for loop finishes,
bM contains the index of the memory having the highest
potential benefit. Finally, we return bM (Line 6).

The worst case time complexity of algorithm
ComputeBestMem is O(n) and that of procedure
MigrateAllCandidates is O(nm), where n is the number of
memories and m is the number of data pages. We omit the
detailed analysis here due to page limitation.

IV. Performance Evaluation

1. Experimental Setup

We compared the proposed data migration method with

previous ones in a hybrid memory system that consists of three
memory types; namely DRAM, PRAM, and flash. Note that
the proposed method is also applicable to any hybrid memory
system having more than three memory types. The timing,
energy, and density characteristics of these memories are taken
from [11]–[12] and [19]. The compared methods include
PDRAM [7], RaPP [8], PaPA [10], LMRU (a comparative
method that moves the least recently used pages from DRAM
to NVRAMs and the most recently used pages from NVRAMs
to DRAM), and PrBDR — the predicted benefit-based
dynamic data migration method proposed in this paper.

We used seven different data access traces; namely
Financial1 (Fi1), Financial2 (Fi2), TPC-C, TPC-H, CH(80-20),
CH(50-50), and CH(20-80). Traces Fi1 and Fi2 are two real-
life traces from online transaction processing (OLTP)
applications running at two large financial institutions [21].
TPC-C is an OLTP trace from the standard TPC-C benchmark
[22]. TPC-H is an online analytical processing (OLAP) trace
from the standard TPC-H benchmark [23]. CH(80-20),
CH(50-50), and CH(20-80) are three traces from a merged
OLTP-OLAP benchmark [24]. The notation CH(N1-N2)
represents a hybrid trace in which N1% of OLTP queries and
N2% of OLAP queries are used (N1 + N2 = 100%). The
read/write ratios of these workloads are 23.2/76.8, 82.3/17.7,
82/18, 100/0, 87.7/12.3, 90.5/9.5, and 93.3/6.7, respectively.

By default, the sizes of DRAM, PRAM, and flash are 1 GB,
2 GB, and 2 GB, respectively, when Fi’s traces are used. The
corresponding sizes are 2 GB, 4 GB, and 4 GB for other traces.
We use the average response time (that is, average execution
time) and average energy consumption as the performance
metrics. The measurement units of these metrics are
microseconds (us) and millijoules (mJ), respectively.

2. Result Analysis

Figures 3 and 4 show the average response time and average
energy consumption of the methods with various workloads.
With regard to response time, the proposed method PrBDR is
about 1.5 to 4.5 times better than the other methods. For
example, when the workload Fi1 is used, the improvement
ratios of PrBDR over PDRAM, RaPP, PaPA, and LMRU are
1.58, 1.51, 1.69, and 1.44, respectively. Meanwhile, when Fi2
is used, the corresponding ratios are higher at 4.73, 2.31, 4.13,
and 3.14. The reduced response times of PrBDR come from
the two main factors that we have done to overcome the
limitations of previous methods. First, we predict the access
frequency values of the data pages in the near future, and then
use the predicted values, instead of the historical values, for
assessing the need of migrations. Second, we measure fully the
gains and costs of all migration choices, and then put the data

ETRI Journal, Volume 36, Number 6, December 2014 Hai Thanh Mai et al. 995
http://dx.doi.org/10.4218/etrij.14.0114.0012

Fig. 3. Measuring average response time with various workloads.

0

6

12

18

24

30

Fi1 Fi2 TPC-C TPC-H CH(80-20) CH(50-50) CH(20-80)

A
vg

. r
es

po
ns

e
ti

m
e

(µ
s)

 PDRAM RaPP PaPA LMRU PrBDR

Workloads

Fig. 4. Measuring average energy consumption with various
workloads.

0

0.25

0.50

0.75

1.00

1.25

Workloads

A
vg

. e
ne

rg
y

co
ns

um
pt

io
n

(m
J)

Fi1 Fi2

TPC-C TPC-H CH(80-20) CH(50-50) CH(20-80)

0.0125

0.0100

0.0075

0.0050

0.0025

0

Workloads

A
vg

. e
ne

rg
y

co
ns

um
pt

io
n

(m
J)

PDRAM RaPP PaPA LMRU PrBDR

pages in the memories having the highest potential benefits,
instead of simply migrating the pages every time their access
frequencies go beyond a certain threshold. As for energy
consumption, PrBDR is at the middle position compared to
other methods. Specifically, the amounts of energy consumed
by PrBDR are 15% to 44% lower than those of PDRAM and
LMRU, while being often similar to, or sometimes 5% to 25%
higher than, those of RaPP and PaPA. Since the proposed
method does not always consume the lowest amount of energy,
it is more suitable to be used in hybrid memory systems where
response time reduction is preferable. Notice that even though
some previous methods may consume a little less energy than
PrBDR, adjusting those methods to use more energy to obtain
lower response times is very difficult or even impossible since
finding fixed threshold values that are good for all workloads
all of the time is not easy.

Figure 5 presents the performance of the methods when we
vary the ratio of the memories’ sizes. First of all, Figs. 5(a) and

Fig. 5. Measuring average response time and energy
consumption with various ratios of memory sizes.

0

5

10

15

20

25

PDRAM RaPP PaPA LMRU PrBDR

A
vg

. r
es

po
ns

e
ti

m
e

(μ
s)

1:3 2:2 3:1
(a) PRAM : flash ratio (fix DRAM = 1)

0

0.2

0.4

0.6

0.8

1.0

1:3 2:2 3:1
(b) PRAM : flash ratio (fix DRAM = 1)

A
vg

. e
ne

rg
y

co
ns

um
pt

io
n

(m
J)

0

5

10

15

20

25

A
vg

. r
es

po
ns

e
ti

m
e

(μ
s)

1:3 2:2 3:1
(c) DRAM : flash ratio (fix PRAM = 1)

0

0.6

1.2

1.8

2.4

3.0

1:3 2:2 3:1
(d) PRAM : flash ratio (fix PRAM = 1)

A
vg

. e
ne

rg
y

co
ns

um
pt

io
n

(m
J)

0

2

4

6

8

10
A

vg
. r

es
po

ns
e

ti
m

e
(μ

s)

1:3 2:2 3:1
(e) DRAM : PRAM ratio (fix flash = 1)

0

0.6

1.2

1.8

2.4

3.0

1:3 2:2 3:1
(f) DRAM : PRAM ratio (fix flash = 1)

A
vg

. e
ne

rg
y

co
ns

um
pt

io
n

(m
J)

5(b), respectively, demonstrate the response time and energy
consumption of the methods when we fix the ratio of DRAM
and change the ratios of PRAM and flash. From Fig. 5(a), we
see that when the amount of PRAM is raised and the amount
of flash is reduced, the average response times of all methods
decrease quickly because both the read and write speeds of
PRAM are much better than those of flash. However, Fig. 5(b)
shows that the average energy consumptions of the methods
decrease only a little for the same trend of changing the
memory ratio. This is because the system’s energy
consumption is dominated by the energy consumed by
accesses to a small number of pages in flash, which have not
been moved to DRAM or PRAM yet, and the energy
consumed by DRAM. Next, consider Figs. 5(c) and 5(d)
where the ratio of PRAM is fixed at one and the ratios of
DRAM and flash are changed. Due to DRAM’s characteristics,
the response times decrease while the amounts of energy
consumption increase significantly for all methods. Note that
from Figs. 5(a) and 5(c), it is clear that increasing the amount
of either DRAM or PRAM will result in similarly high
response time improvements. However, because DRAM is a
volatile memory, while PRAM is a non-volatile one, using

996 Hai Thanh Mai et al. ETRI Journal, Volume 36, Number 6, December 2014
http://dx.doi.org/10.4218/etrij.14.0114.0012

more DRAM results in a high negative impact on energy
consumption, but using more PRAM does not, as we can
observe in Figs. 5(b) and 5(d). Now, consider Figs. 5(e) and
5(f), where we do not alter the ratio of flash but adjust those of
DRAM and PRAM. Interestingly, even though DRAM is over
two-times faster than PRAM, the hybrid memory made mostly
from DRAM has an average response time that is just a little
lower than the hybrid memory made mostly from PRAM. The
reason is that most hot pages have been moved to DRAM, and
the penalty for accesses to hot pages still residing in PRAM is
low. Nevertheless, there is a fast increase in the amount of
energy consumption when DRAM occupies larger proportions.
Overall, the proposed method obtains significantly lower
response time than the others with various ratios of memory
sizes. Besides this, the energy consumption rates of our method
are also similar to or sometimes lower than those of other
methods.

V. Related Work

Qureshi and others present in [6] one of the first studies
about hybrid main memories where DRAM is combined with
PRAM. The authors use DRAM as a cache for PRAM and
manage the data movement at page level. On a page fault, they
fetch the required page from the hard drive to only DRAM and
allocate a space for that page in PRAM, but do not write to
PRAM until the page is evicted from DRAM later. When a
dirty page is evicted from DRAM, only the dirty data of the
page is written to PRAM. In an inspiring work [7], Dhiman
and others locate DRAM and PRAM at the same level (flat
layout) instead of using DRAM as a cache. An access map is
managed in PRAM to store the write frequency values of
pages in PRAM. When the frequency value of a PRAM page
becomes a multiple of a given threshold, this write-intensive
page will be swapped with a victim page in DRAM. In [8],
Ramos and colleagues also organize DRAM and PRAM in a
flat layout and perform page-based data migration. Both read
and write frequency values are taken into account when
making page migration decisions. Pages in DRAM and
PRAM are arranged into 15 queues based on their access
frequency values. Among the queues, a page is promoted to a
higher queue or demoted to a lower queue when its access
frequency is updated. Whenever the frequency of a PRAM
page reaches a migration threshold, it is promoted to one of the
top queues and migrated to DRAM. In [10], the authors
suggest to use an on-chip DRAM at the upper layer and an off-
chip DRAM together with a PRAM in a flat layout at the lower
layer. For page migration between DRAM and PRAM, they
record the access frequency of the pages and place hot pages in
DRAM and cold pages in PRAM. Here, they categorize a page

as hot when it has two consecutive accesses or cold when it has
two consecutive non-accesses. In [9], other authors propose to
use four unused bits in the page table entry to store write
information. More recent bits are assigned higher weights to
exploit temporal locality. Then, instead of looking at individual
pages, they consider groups of physically continuous pages for
migration. Average group write frequency values are computed,
and groups that have such values greater than a hot threshold or
lower than a cold threshold will be migrated to DRAM or
PRAM, respectively. Choi and others focus on the flat layout
of the memories and assume that all page accesses are known
in advance [14]. Then, they propose an evaluation framework
to compute the theoretically maximum performance of a
hybrid main memory. Instead of PRAM, the authors in [25]
propose a hybrid DRAM and flash SSD memory system. The
flash memory is treated as a transparent extension of DRAM.
Applications can access the flash memory via the page-based
virtual memory interface, but internally, the system works at
arbitrary-sized objects level. In the virtual memory, each object
is allocated a whole page even if it needs much less than a page,
and the object is always placed at the start of the page. DRAM
is separated into two parts; namely, a page buffer and an object
cache. An extension of this work is presented in [11], where a
new kind of flash memory connected through PCIe ports is
used.

VI. Conclusion

We proposed a new dynamic data migration method for
hybrid DRAM–NVRAMs main memories. Like previous
studies, we attempt to identify and migrate hot and cold data
pages among DRAM and NVRAMs to take advantage of
DRAM’s high speed and NVRAMs’ low power consumption.
However, to make the process much more effective, our
method goes further by predicting carefully the data access
frequency in the near future and computing comprehensively
the potential benefits of all migration choices before making
decisions. Our method is the first that overcomes the use of
fixed migration thresholds, considers fully the gains and costs
of migrations, and is applicable to hybrid memories that have
multiple NVRAMs. Experimental results with real-life and
standardized data show that our method improves over the
existing ones the average response time by a factor of up to
four, while keeping a similar rate of energy consumption.

References

[1] SAP HANA In-Memory Database, SAP. Accessed Jan. 6, 2014.

http://www.sap.com/pc/tech/in-memory-computing-hana.html

[2] Oracle TimesTen In-Memory Database, Oracle. Accessed Jan. 6,

ETRI Journal, Volume 36, Number 6, December 2014 Hai Thanh Mai et al. 997
http://dx.doi.org/10.4218/etrij.14.0114.0012

2014. http://www.oracle.com/us/products/database/timesten/

[3] UNICOM SolidDB In-Memory Database, UNICOM Systems.

Accessed Sept. 12, 2014. http://unicomsi.com/soliddb

[4] L.A. Barroso and U. Hoelzle, “The Datacenter as a Computer:

An Introduction to the Design of Warehouse-Scale Machines,”

San Rafael, CA, USA: Morgan and Claypool, 2009.

[5] C. Lefurgy et al., “Energy Management for Commercial

Servers,” IEEE Comput., vol. 36, no. 12, Dec. 2003, pp. 39–48.

[6] M.K. Qureshi, V. Srinivasan, and J.A. Rivers, “Scalable High

Performance Main Memory System Using Phase-Change

Memory Technology,” Int. Symp. Comput. Archit., Austin, TX,

USA, June 20–24, 2009, pp. 24–33.

[7] G. Dhiman, R.Z. Ayoub, and T. Rosing, “PDRAM: A Hybrid

PRAM and DRAM Main Memory System,” Des. Autom. Conf.,

San Francisco, CA, USA, July 26–31, 2009, pp. 664–669.

[8] L.E. Ramos, E. Gorbatov, and R. Bianchini, “Page Placement in

Hybrid Memory Systems,” Int. Conf. Supercomput., Tucson, AZ,

USA, May 31–June 4, 2011, pp. 85–95.

[9] D.-J. Shin et al., “Adaptive Page Grouping for Energy Efficiency

in Hybrid PRAM-DRAM Main Memory,” Res. Appl. Computat.

Symp., San Antonio, TX, USA, Oct. 23–26, 2012, pp. 395–402.

[10] K.H. Park et al., “Resource Management of Manycores with a

Hierarchical and a Hybrid Main Memory for MN-MATE Cloud

Node,” IEEE World Congress Services, Honolulu, HI, USA, June

24–29, 2012, pp. 301–308.

[11] K. Sudan, A. Badam, and D. Nellans, “NAND-Flash: Fast

Storage or Slow Memory?” Non-Volatile Memory Workshop, San

Diego, CA, USA, Mar. 4–6, 2012.

[12] B.C. Lee et al., “Architecting Phase Change Memory as a

Scalable DRAM Alternative,” Int. Symp. Comput. Archit., Austin,

TX, USA, June 20–24, 2009, pp. 2–13.

[13] P. Zhou et al., “A Durable and Energy Efficient Main Memory

Using Phase Change Memory Technology,” Int. Symp. Comput.

Archit., Austin, TX, USA, June 20–24, 2009, pp. 14–23.

[14] J.H. Choi et al., “OPAMP: Evaluation Framework for Optimal

Page Allocation of Hybrid Main Memory Architecture,” IEEE Int.

Conf. Parallel Distrib. Syst., Singapore, Dec. 17–19, 2012, pp.

620–627.

[15] Intel, STMicroelectronics Deliver Industry’s First Phase Change

Memory Prototypes, Intel Corporation, 2008. Accessed Jan. 6,

2014. http://www.intel.com/pressroom/archive/releases/2008/

20080206 corp.htm

[16] Y. Choi et al., “A 20 nm 1.8 V 8 Gb PRAM with 40 MB/s

Program Bandwidth,” IEEE Int. Solid-State Circuits Conf., San

Francisco, CA, USA, Feb. 19–23, 2012, pp. 46–48.

[17] Fusion-Io Iodrive2 Duo Data Sheet, Fusion-io. Accessed Jan. 6,

2014. http://www.fusionio.com/data-sheets/iodrive2-duo/

[18] F. Bedeschi et al., “A Multi-level-Cell Bipolar-Selected Phase-

Change Memory,” IEEE Int. Solid-State Circuits Conf., San

Francisco, CA, USA, Feb. 3–7, 2008, pp. 428–625.

[19] S. Chen, P.B. Gibbons, and S. Nath, “Rethinking Database

Algorithms for Phase Change Memory,” Biennial Conf.

Innovative Data Syst. Res., Asilomar, CA, USA, Jan. 9–12, 2011,

pp. 21–31.

[20] A.J. Hayter, “Probability and Statistics for Engineers and

Scientists,” Belmont, CA, USA: Cengage Learning, 2007, pp.

533–545.

[21] UMass Trace Repository, University of Massachusetts Amherst,

2007. Accessed Jan. 6, 2014. http://traces.cs.umass.edu/index.php/

Storage/Storage

[22] TPC-C Benchmark, Transaction Processing Performance Council,

2014. Accessed Jan. 6, 2014. http://www.tpc.org/tpcc/

[23] TPC-H Benchmark, Transaction Processing Performance

Council, 2014. Accessed Jan. 6, 2014. http://www.tpc.org/tpch/

[24] R. Cole et al., “The Mixed Workload CH-benCHmark,” Int.

Workshop Testing Database Syst., Athens, Greece, June 13, 2011,

pp. 1–6.

[25] A. Badam and V.S. Pai, “SSDAlloc: Hybrid SSD/RAM Memory

Management Made Easy,” USENIX Symp. Netw. Syst. Des.

Implementation, Boston, MA, USA, Mar. 30–Apr. 1, 2011, pp.

211–224.

998 Hai Thanh Mai et al. ETRI Journal, Volume 36, Number 6, December 2014
http://dx.doi.org/10.4218/etrij.14.0114.0012

Hai Thanh Mai is a researcher of the Big

Data Software Platform Research Department,

Electronics and Telecommunications Research

Institute, Daejeon, Rep. of Korea. He received

his BS degree in computer science from the

University of Sciences, Ho Chi Minh, Vietnam,

in 2005. He then went on to receive his MS

and PhD degrees in computer science from the Korea Advanced Institute

of Science and Technology (KAIST), Daejeon, Rep. of Korea, in 2009

and 2012, respectively. He was a BK21 postdoctoral fellow at KAIST’s

Department of Computer Science in 2012. His research interests include

database systems, big data management, and data mining.

Kyoung Hyun Park is a senior researcher at the

Electronics and Telecommunications Research

Institute, Daejeon, Rep. of Korea. He received his

MS degree in computer science from Chungbuk

National University, Cheongju, Rep. of Korea, in

2001. He has been involved in many projects

related to continuous speech recognition systems

and database systems. His current research interests include big data

management systems and cloud computing platforms.

Hun Soon Lee received his BS and MS degrees

in computer science from Chungnam National

University, Daejeon, Rep. of Korea, in 1997 and

1999, respectively. Since 1999, he has been with

the Electronics and Telecommunications

Research Institute, Daejeon, Rep. of Korea. His

main research interests include data management

systems, data processing systems, and storage systems.

 Chang Soo Kim received his MS degree in

computer science from Sogang University, Seoul,

Rep. of Korea, in 1995 and his PhD degree in

information and communication engineering

from Chungbuk National University, Cheongju,

Rep. of Korea, in 2006. He is a principal

researcher working at the Software Research

Laboratory, Electronics and Telecommunications Research Institute,

Daejeon, Rep. of Korea. His research interests include big data

management and processing systems; database systems; cloud

computing; and storage systems.

Miyoung Lee is a principal research engineer of

the Electronics and Telecommunications

Research Institute, Daejeon, Rep. of Korea. She

received her MS degree in computer science

from Seoul National University, Rep. of Korea,

in 1983 and her PhD degree in computer

engineering from Chungnam National University,

Daejeon, Rep. of Korea, in 2006. From 1988, she has conducted research

on database technology and has been involved in many projects related to

this and the field of distributed data processing technology. Her current

research interests include database systems, stream processing systems,

and big data platforms.

Sung Jin Hur is a director of the Data

Management Research Section, Electronic and

Telecommunications Research Institute, Daejeon,

Rep. of Korea, which makes contributions to the

nation’s economic and social development

through research. He has more than fifteen years

of experience in real-time data processing and

cloud computing systems. He is currently a project manager developing

big data SW platforms based on accelerators such as GPGPU, FPGA,

and next-generation memory technology to provide the environment for

a real-time analysis of big data.

