• 제목/요약/키워드: dynamic channel

Search Result 784, Processing Time 0.027 seconds

Multi-Cluster based Dynamic Channel Assignment for Dense Femtocell Networks

  • Kim, Se-Jin;Cho, IlKwon;Lee, ByungBog;Bae, Sang-Hyun;Cho, Choong-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1535-1554
    • /
    • 2016
  • This paper proposes a novel channel assignment scheme called multi-cluster based dynamic channel assignment (MC-DCA) to improve system performance for the downlink of dense femtocell networks (DFNs) based on orthogonal frequency division multiple access (OFDMA) and frequency division duplexing (FDD). In order to dynamically assign channels for femtocell access points (FAPs), the MC-DCA scheme uses a heuristic method that consists of two steps: one is a multiple cluster assignment step to group FAPs using graph coloring algorithm with some extensions, while the other is a dynamic subchannel assignment step to allocate subchannels for maximizing the system capacity. Through simulations, we first find optimum parameters of the multiple FAP clustering to maximize the system capacity and then evaluate system performance in terms of the mean FAP capacity, unsatisfied femtocell user equipment (FUE) probability, and mean FAP power consumption for data transmission based on a given FUE traffic load. As a result, the MC-DCA scheme outperforms other schemes in two different DFN environments for commercial and office buildings.

PERFORMANCE OF MYOPIC POLICY FOR MULTI-CHANNEL DYNAMIC SPECTRUM ACCESS NETWORKS

  • Lee, Yutae
    • East Asian mathematical journal
    • /
    • v.30 no.1
    • /
    • pp.23-29
    • /
    • 2014
  • To solve inefficient spectrum usage problem under current static spectrum management policy, various kinds of dynamic spectrum access strategies have appeared. Myopic policy, which maximizes immediate throughput, is a simple and robust strategy with reduced complexity. In this paper, we present a simple mathematical model to evaluate the saturation throughput and medium access delay of a myopic policy in the presence of multiple channels.

Inter-cell DCA Algorithm for Downlink Wireless Communication Systems (하향링크 무선 통신 시스템에서의 Inter-cell DCA 알고리즘)

  • Kim, Hyo-Su;Kim, Dong-Hoi;Park, Seung-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7A
    • /
    • pp.693-701
    • /
    • 2008
  • In OFDMA (Orthogonal Frequency Division Multiple Access) system that frequency reuse factor is 1, as the same channels in the neighborhood cells creates inter-cell co-channel interference which provides a resource underutilization problem, channel allocation schemes to minimize inter-cell interference have been studied. This paper proposes a new CNIR (Carrier to Noise and Interference Ratio)-based distributed Inter-cell DCA (Dynamic Channel Allocation) algorithm in the OFDMA environment with frequency reuse factor of 1. When a channel allocation is requested, if there is not a free channel in home cell or the available free channels in home cell do not satisfy a required threshold value, the proposed Inter-cell DCA algorithm finds CNIR values of available free channels in the neighborhood cells and then allocates a free channel with maximum CNIR value. Through the simulation results, we find that the proposed scheme decreases both new call block rate and forced termination rate due to new call generation at the same time because it increases channel allocation probability.

A Study on Dynamic Channel Assignment to Increase Uplink Performance in Ultra Dense Networks (초고밀도 네트워크에서 상향링크 성능향상을 위한 유동적 채널할당 연구)

  • Kim, Se-Jin
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.25-31
    • /
    • 2022
  • In ultra dense networks (UDNs), macro user equipments (MUEs) have significant interference from small-cell access points (SAPs) since a number of SAPs are deployed in the coverage of macro base stations of 5G mobile communication systems. In this paper, we propose a dynamic channel assignment scheme to increase the performance of MUEs for the uplink of UDNs even though the number of SAPs is increased. The target of the proposed dynamic channel assignment scheme is that the signal-to-interference and noise ratio (SINR) of MUEs is above a given SINR threshold assigning different subchannels to SUEs from those of MUEs. Simulation results show that the proposed dynamic channel assignment scheme outperforms others in terms of the mean MUE capacity even though the mean SUE capacity is decreased a little lower.

Development of Evolution Program for Dynamic Channel Assignment in Wireless Telecommunication Network (무선통신 네트워크에서 동적채널할당을 위한 진화프로그램의 개발)

  • Kim, Sung-Soo;Han, Kwang-Jin;Lee, Jong-Hyun
    • IE interfaces
    • /
    • v.14 no.3
    • /
    • pp.227-235
    • /
    • 2001
  • There is a rapidly growing demand for wireless telecommunication. However, the number of usable channel is very limited. Therefore, the problem of channel assignment becomes more and more important to use channels as efficiently as possible. The objective of this paper is to develop an evolution program (EP) to find an efficient dynamic channel assignment method for minimum interference among the channels within reasonable time. The series of specific channel number is used as a representation of chromosome. The only changed chromosomes by crossover and mutation are evaluated in each generation to save computation time and memory for the progress of improved EP. We can easily differentiate the fitness value of each chromosome using proposed evaluation function. We also control the weighting factor of the mutation rate and the used number of elitist chromosomes for the speed of convergence to the optimal solution.

  • PDF

Efficient Dynamic Channel Assignment Scheme for Cellular Mobile Systems (이동통신시스템의 성능 개선을 위한 동적채널할당체계)

  • Chang, Kun-Nyeong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.22 no.4
    • /
    • pp.173-182
    • /
    • 1997
  • In this paper, an efficient dynamic channel assignment scheme is suggested, which consists of two types of channel allocation strategies : ordinary channel allocation strategy and channel reallocation strategy. An analysis on the handoff probabilities of handoff and new calls is also performed, and using the analyzed handoff probability, the presented scheme is compared with other existing schemes in terms of three types of blocking probabilities- new call blocking probability, handoff call blocking probability, and network blocking probability (incomplete service probability). Simulation results show that the presented scheme significantly reduces those blocking probabilities over the existing schemes. Furthermore, the scheme has much smaller number of reallocation than other schemes.

  • PDF

On the Large Eddy Simulation of Temperature Field Using Dynamic Mixed Model in a Turbulent Channel (동적혼성 모델을 이용한 난류채널의 온도장 해석)

  • Lee Gunho;Na Yang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1255-1263
    • /
    • 2004
  • An a priori test has been conducted for the dynamic mixed model which was generalized for the prediction of passive scalar field in a turbulent channel flow The results from a priori tests indicated that dynamic mixed model is capable of predicting both subgrid-scale heat flux and dissipation rather accurately. The success is attributed to the explicitly calculated resolved term incorporated into the model. The actual test of the model in a LES a posteriori showed that dynamic mixed model is superior to the widely used dynamic Smagorinsky model in the prediction of temperature statistics.

Dynamic Channel Allocation Algorithm for Co-channel Interference Avoidance in Multi-cell OFDMA Systems (OFDMA 다중 셀 환경에서 동일 채널 간섭을 피하기 위한 동적 자원 할당 알고리즘)

  • Lee, Je-Min;Seo, Woo-Hyun;Wang, Hano;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.5
    • /
    • pp.92-98
    • /
    • 2007
  • We propose the schemes for the dynamic channel allocation (DCA) in multi-cell OFDMA systems to avoid co-channel interference (CCI) without the additional complexity. The allocatable subcarriers areas, which is designed to avoid CCI among cells, are determined for each cell. Each cell allocates the subcarriers within the allocatable subcarriers area of the cell independently. We consider the trade off between the reduced frequency selection diversity and the amount of CCI on a subcarrier by the determination of allocatable subcarriers area. Hence, the equal allocation bound scheme for the high selectivity channel and the flexible allocation bound scheme for the low selectivity channel are proposed. Through the numerical results, it is confirmed that the proposed schemes have better performance in the aspects of the number of overlapping allocated subcarriers, the capacity and the outage probability compared to the case which does not determined the allocatable subcarriers area.

Opportunistic Spectrum Access with Dynamic Users: Directional Graphical Game and Stochastic Learning

  • Zhang, Yuli;Xu, Yuhua;Wu, Qihui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5820-5834
    • /
    • 2017
  • This paper investigates the channel selection problem with dynamic users and the asymmetric interference relation in distributed opportunistic spectrum access systems. Since users transmitting data are based on their traffic demands, they dynamically compete for the channel occupation. Moreover, the heterogeneous interference range leads to asymmetric interference relation. The dynamic users and asymmetric interference relation bring about new challenges such as dynamic random systems and poor fairness. In this article, we will focus on maximizing the tradeoff between the achievable utility and access cost of each user, formulate the channel selection problem as a directional graphical game and prove it as an exact potential game presenting at least one pure Nash equilibrium point. We show that the best NE point maximizes both the personal and system utility, and employ the stochastic learning approach algorithm for achieving the best NE point. Simulation results show that the algorithm converges, presents near-optimal performance and good fairness, and the directional graphical model improves the systems throughput performance in different asymmetric level systems.

Dynamic Spectrum Sensing and Channel Access Mechanism in Frequency Hopping Based Cognitive Radio Ad-hoc Networks (주파수 홉핑 기반 인지무선 애드 혹 네트워크에서 동적 스펙트럼 센싱 및 채널 엑세스 방안)

  • Won, Jong-Min;Yoo, Sang-Jo;Seo, Myunghwan;Cho, Hyung-Weon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.11
    • /
    • pp.2305-2315
    • /
    • 2015
  • Frequency resource value is growing more and more with the development of the wireless communication. With the advent of the current information society comes a serious shortage of frequency resource, as the amount of supply is far from meeting its demands. Thus, cognitive radio (CR) technique is receiving more attention as a way to make use of the temporarily unoccupied frequency resource. In this paper we propose a novel out-of-band spectrum sensing and dynamic channel access scheme for frequency hopping-based cognitive radio ad-hoc networks. At the beginning of each current channel hopping time, member nodes perform spectrum sensing for the next hopping channel. Based on the proposed collision free primary detection notification, member nodes can determine whether they should execute a hopping time extension procedure of the current channel or not. When the primary detected hopping channel is re-idled, the hopping pattern recovery procedure is performed. In this paper we evaluated the performance of the proposed dynamic sensing and hopping channel extension mechanism for the various wireless network conditions. As a result, we show that the proposed method can increase channel utilization and provide reliable channel management operation.