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Abstract 
 

This paper proposes a novel channel assignment scheme called multi-cluster based dynamic 
channel assignment (MC-DCA) to improve system performance for the downlink of dense 
femtocell networks (DFNs) based on orthogonal frequency division multiple access 
(OFDMA) and frequency division duplexing (FDD). In order to dynamically assign channels 
for femtocell access points (FAPs), the MC-DCA scheme uses a heuristic method that consists 
of two steps: one is a multiple cluster assignment step to group FAPs using graph coloring 
algorithm with some extensions, while the other is a dynamic subchannel assignment step to 
allocate subchannels for maximizing the system capacity. Through simulations, we first find 
optimum parameters of the multiple FAP clustering to maximize the system capacity and then 
evaluate system performance in terms of the mean FAP capacity, unsatisfied femtocell user 
equipment (FUE) probability, and mean FAP power consumption for data transmission based 
on a given FUE traffic load. As a result, the MC-DCA scheme outperforms other schemes in 
two different DFN environments for commercial and office buildings. 
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1. Introduction 

According to recent reports, mobile data traffic volume from smart phones, tablets, and so on 
is growing dramatically and more than 80% of them occur in indoor environments [1, 2]. In 
order to solve these problems, the femtocell network has become a promising solution since 
femtocells improve both the system capacity and coverage with low cost and low energy 
consumption [3-6]. Therefore, the world’s major mobile network operators (MNOs) have been 
showing a great deal of attention to adopt femtocells for next generation mobile networks such 
as 3GPP LTE/LTE-Advanced [7-9] and IEEE 802.16m [10, 11]. However, in spite of the 
advantages of femtocells, various technical challenges still remain to enhance system 
performance. Channel assignment considering interference mitigation is one of the main 
issues because femtocell access points (FAPs) use the licensed spectrum owned by the 
macrocell network, and thus have cross-tier and co-tier interference from macro base stations 
(MBSs) and neighbor FAPs, respectively [12, 13]. 
 In recent literature, several channel assignment schemes have been studied for 
femtocell networks. Early channel assignment schemes mostly aimed to mitigate cross-tier 
interference between macrocells and residential femtocell networks (RFNs) in which each 
detached house has one or more FAPs [14-21]. In [14-17], authors proposed channel 
assignment schemes based on frequency reuse (FR) or fractional frequency reuse (FFR) to 
assign different channels for macrocell and femtocell networks to improve system 
performance. However, from performance results, it is shown that even though cross-tier 
interference is remarkably attenuated, co-tier interference between FAPs significantly 
increases as the number of FAPs increases. Since then, in [22]-[24], some dynamic channel 
assignment (DCA) schemes have proposed using efficient heuristic algorithms for in-building 
dense femtocell networks (DFNs) because the channel assignment considering co-tier 
interference is a non-linear non-convex NP-Hard problem [25]-[26]. In [26] and [23], authors 
proposed DCA schemes using graph coloring algorithm (GCA). Each FAP is first included in 
one FAP cluster in both DCA schemes and subchannels are dynamically assigned to FAP 
clusters according to the order of maximum capacity of FAP clusters in [26], while using 
mathematical optimization techniques in [23]. However, even though FAPs have relatively 
good signal to interference plus noise ratios (SINRs), FAPs use subchannels assigned for one 
FAP cluster thus the system capacity is limited. On the other hand, in [24], authors proposed a 
multiple clustering based DCA scheme called graph-based dynamic frequency reuse 
(GBDFR). In the GB-DFR scheme, each FAP is first included in one FAP cluster by GCA and 
the same number of subchannels are assigned to FAP clusters. Then, in order to use more 
subchannels, FAPs find other FAP clusters in which no interfering FAPs are included. 
However, in the GB-DFR scheme, FAPs are members of as many FAP clusters as possible and 
it causes that co-tier interference between FAPs to increase significantly. As a result, some 
FAPs have better performance by using subchannels from more than one FAP cluster while 
others have worse performance with no additional subchannels and reduced SINRs of 
femtocell user equipments (FUEs). 
 In this paper, we propose a novel channel assignment scheme called multi-cluster 
based dynamic channel assignment (MC-DCA) to improve system performance for the 
downlink (DL) of DFNs based on orthogonal frequency-division multiple access (OFDMA) 
and frequency division duplexing (FDD). In order to dynamically assign channels for FAPs, 
the MC-DCA scheme uses a heuristic method that consists of two steps: one is a multiple 
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cluster assignment step to group FAPs using GCA with some extensions, while the other is a 
dynamic subchannel assignment step to allocate subchannels for maximizing the system 
capacity. Through simulations, we first find optimum parameters of the multiple FAP 
clustering to maximize the system capacity and then evaluate system performance in terms of 
the mean FAP capacity, unsatisfied FUE probability, and mean FAP power consumption for 
data transmission based on a given FUE traffic load. As a result, the MC-DCA scheme 
outperforms other schemes in two different DFN environments for commercial and office 
buildings.  
 The rest of this paper is organized as follows. Section II introduces the system model 
and problem formulation while Section III describes the proposed MCDCA scheme. Then, 
simulation results are presented and discussed in Section IV. Finally, Section V concludes this 
paper with future research direction. 

2. System model 

 
Fig. 1. The system topology and channel assignment: (a) the macrocell topology and location of a 
building with DFNs, (b) an example of DFN topologies with co-tier interference, (c) the channel 

assignment for MBSs and FAPs. 

2.1 System topology and channel management  
We consider a typical two-tier femtocell network architecture where femtocells are overlaped 
on the macrocell to analyze the system performance of DL DFNs based on OFDMA-FDD. Fig. 
1 shows the system topology and channel management for MBSs and FAPs. There are M 
hexagonal macrocells and a set of MBSs, = {1, 2, ..., M} (M = | |), is installed at the 
center of each macrocell. We assume that M = 7 and the target macrocell is surrounded by six 
neighbor macrocells as shown in Fig. 1-(a). Further, an F-floor building is located in the center 
macrocell and a set of FAPs, = {1, 2, ..., N} (N = | |) composes DFNs in the building. Let 
dIS and dMB denote the inter-site distance between the center MBS (i.e., MBS 1) and the 
surrounding MBSs, and between the center MBS and the building with DFNs, respectively. 
Fig. 1-(b) shows an example of DFN topologies in which   FAPs are uniformly deployed 
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on each floor of the building and each FAP has not only the co-tier interference coming from 
the neighbor FAPs in the same floor, but also the co-tier interference coming from the floors 
above and below. A femtocell gateway (FGW) connected to the DFN controls all FAPs which 
support  no handover request from FUEs (i.e., a centralized management system) while each 
FAP serves one FUE at a random location in the coverage of the serving FAP with the 
maximum radius, FC

rd , in meters. In addition, the MBS uses a three-sectored antenna thus the 
macrocell coverage is divided into three cell sites, site 1, 2, and 3, while the FAP uses an 
omni-directional antenna. Therefore, MBSs divide total subchannels into three subchannel 
groups, g1, g2, and g3, to assign for macrocell user equipments (MUEs) in site 1, 2, and 3, 
respectively, as shown in Fig. 1-(c). On the other hand, in order to mitigate cross-tier 
interference from MBSs, the FGW assigns pairs of two subchannel groups, 32 gg ∪ , 31 gg ∪ , 
and 21 gg ∪ , which are not used by MBSs but by FAPs in sites 1, 2, and 3, respectively. It is 
assumed that a set of subchannels, K = {1, 2, ..., K} (K = |K |), is assigned for FAPs in each 
site and all FAPs are with open access mode, in which every mobile device in the building can 
connect to FAPs for mobile services, to focus on analyzing the system performance of DFNs. 
Finally, we assume perfect knowledge of channel gains, which can be calculated using the 
propagation losses and shadowing statistics (but ignoring the short-term fading effects). 

2.2 Propagation and SINR models 
In order to calculate the SINR between the FUE and its serving FAP, we use the ITU indoor 
path loss model and the COST-231 Hata model (urban area) for indoor and outdoor 
propagation models, respectively [27][28]. Let FC

inL  and MC
mnL  denote path losses of the FUE 

served by FAP n (n ∈ V ) from FAP i (i ∈ V ) and MBS m (m ∈M ) in dB, respectively. 
FC
inL  and MC

mnL  can be expressed as 
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where cf  is the carrier frequency in MHz, while ind  and mnd  are distances from the FUE of 
FAP n to FAP i and to MBS m in meters, respectively. In (1), α  and )(δfL  are the path loss 
exponent and the floor loss penetration factor with the number of floors, (1 ≤ δ  ≤ F), between 
the transmitter and receiver [27]. )(δfL  can be expressed as 
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 Further, in (2), th  and rh  denote the antenna heights of MBSs and FUEs in meters, 
respectively, while )8.0)(log56.1()7.0)(log1.1()( 1010 −−−= crcrr fhfhL  and wL  are the antenna 
height correction factor of receivers and attenuation loss of an outdoor wall in dB, 
respectively. 
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 Through (1) and (2), the SINR of the FUE served by FAP n at subchannel k, nkγ , can 
be expressed as 
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where FC

tp  and MC
tp  denote the transmission power of each subchannel for the FAP and MBS, 

respectively. Further, nkω  is an indicator variable in a binary subchannel assignment matrix, 

KNnk ×= ][ωΩ  ( KV ∈∀∈∀ kn , ), 1=nkω  if subchannel k is allocated for FAP n, and 0 
otherwise. In addition, 2

Nσ  and gp  are the white noise power and the azimuth antenna pattern 
between MBSs and FUEs in dB, respectively. gp  can be expressed as 
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where gβ  and maxβ  are the maximum antenna gain and maximum attenuation in dB, 
respectively, while θ  and 70dB3 =θ  are the azimuth antenna pattern of MBSs and 3dB 
beamwidth, respectively [29]. 
 Given a specific nkγ  in (4), the spectral efficiency for the FUE of FAP n at subchannel 
k, nkr , is obtained by 
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where )1(log)( 2 xxSE η+=  in bps/Hz and )5ln(/5.1 eP−=η  with the target bit error rate eP  [30]. 
Further, minγ  and maxγ  are the minimum and maximum SINRs in dB, respectively, while 

)( minmin γESr =  and )( maxmax γESr =  are the minimum and maximum spectral efficiencies in 
bps/Hz, respectively [29,31]. 

2.3 FAP capacity, unsatisfied FUE probability, and power consumption for data 
transmission 

Through (6), the capacity of FAP n, nC , can be expressed as 
 

,    , V
K
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where W is the bandwidth of a subchannel in Hz. Further, let the unsatisfied FUE probability, 

usP , to be the probability that FUEs have capacities less than a given FUE traffic load, ρ , in 
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bps can be expressed as 
 

.    ),Pr(us V∈∀<= nCP n r                                              (8) 
 

 In addition, the power consumption of FAP n, nE , for data transmission in mW can be 
expressed as 
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3. Multi-cluster based dynamic channel assignment scheme  
In this section, we propose the MC-DCA scheme using a heuristic method that consists of two 
steps, one is a multiple cluster assignment step to group FAPs using GCA with some 
extensions while the other is a dynamic subchannel assignment step to allocate subchannels. 

3.1 Step 1: multiple cluster assignment 

FAP 6

FAP 8

FAP 2

FAP 4

Floor 3

Floor 2

Floor 1

(a) An example of DFN topologies

FAP 5

FAP 9FAP 7

FAP 1 FAP 3

(b) Single FAP clustering (stage 1) (c) Multiple FAP clustering (stage 2)

Step 1: multiple FAP clustering 

Color 5

Color 4

Color 3

Color 2

Color 1

FAP 2

FAP 4

FAP 9

FAP 1 FAP 3

FAP 2

FAP 4

FAP 9

FAP 1 FAP 3

FAP 5 FAP 5

FAP 7FAP 7

FAP 8FAP 8

FAP 6 FAP 6

Fig. 2. An example of the multiple FAP clustering step in the MC-DCA scheme: (a) an example of DFN 
topologies in an F-floor building (F=3, N=9), (b) stage 1: an interference graph using GCA (Y=4), (c) 

stage 2: multiple FAP clustering based on the interference graph. 
 
Fig. 2 shows an example of the multiple cluster assignment step which has two stages, the 
FGW first groups FAPs using GCA in stage 1 while adds FAPs to other FAP clusters 
considering the transmission rate and co-tier interference of FAPs in stage 2. Fig. 2-(a) is an 
example of DFN topologies in which nine FAPs (N = 9) are deployed in a three-floor building 
(F = 3) and some FAPs have co-tier interference with each other. Under the given DFN 
topology, in stage 1, the FGW first generates a matrix of ones, NNinb ×= ][B  ( V∈∀ ni, ), to 
obtain a binary interference matrix, NNinj ×= ][J  ( V∈∀ ni, ). Let nΓ  and thΓ  be the SINR of 
the FUE of FAP n calculated by the FGW using received signal strength indicator (RSSI) 
measurements from FUEs and a given target threshold of the SINR for FUEs ( maxthmin γγ ≤Γ≤ ) 
in dB, respectively. nΓ  can be obtained by 
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 Then, the FGW finds an FAP, ∗

ni , which gives the strongest co-tier interference to the 
FUE of FAP n and sets 0=∗nin

b  to avoid co-tier interference if thΓ<Γn  until thΓ≥Γn . ∗
ni  can be 

obtained by 
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 After generating B  from (10) and (11), the FGW transforms B  into BJ ~ =  in which 
“ ~ ” denotes a symbol to convert all elements in B  from 1’s to 0’s and vice versa. Then, an 
interference graph G = ( V , E ) can be constructed by the FGW using GCA. For the 
interference graph, V  is used for the vertex set while E  is the edge set to denote co-tier 
interference between FAPs in J . Further, no two connected vertices in E  have the same color, 
that is, the color means the FAP cluster and interfering FAPs do not become members of the 
same FAP cluster. For the GCA, we use DSATUR (Degree of Saturation) algorithm in which 
a predetermined order based on the number of different colors adjacent to the vertex, called the 
saturation degree of a vertex, is used to color the vertices [32]. Finally, from the interference 
graph, the FGW obtains a minimum number of colors, Y = |Y |, Y = {1, 2, ..., Y }, and 
generates a binary FAP cluster matrix, YNnyz ×= ][Z  ( YV ∈∀∈∀ yn , ). nyz  can be obtained by 
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=
otherwise.0

 FAP of FUE  the toassigned isy color  If1 n
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 In addition, in order to add FAPs to other FAP clusters in stage 2, the FGW finds 
available FAP clusters for FUEs and generates a binary available FAP cluster matrix, 

YNnya ×= ][A  ( YV ∈∀∈∀ yn , ), considering co-tier interference based on J . nya  can be 
obtained by 
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 In Fig. 2-(b), for example, the FGW generates an interference graph with four 
different colors (Y =4) using GCA, and FAPs which have the same colors become members of 
the same FAP clusters. Then, the FGW finds available FAP clusters for each FAP considering 
co-tier interference in J , that is, FAP 1, 2, and 3 become members of FAP cluster 4, FAP 4 and 
6 become members of FAP cluster 2, and so on. 
Using Z  and A , in stage 2, the FGW adds FAPs to other FAP clusters and FAPs that are 
members of additional FAP clusters use more subchannels. The FGW first finds an FAP, ∗n , 
which has available clusters in A  with minimum )( nES Γ  ( V∈∀n ), to give higher priority, to 
be added into additional FAP clusters. ∗n  can be obtained by 
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 Also, the FGW finds an available cluster, ∗y , which offers maximum )( ∗ΓnES  for FAP 

∗n  in A . ∗y  can be obtained by 
 
( ). )(maxarg ynnEy
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∈∀

∗
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 In Fig. 2-(c), for example, the FGW adds some FAPs which have available FAP 
clusters and higher priority, to other FAP clusters. It is assumed that the order of priority to add 
FAP clusters obtained by (15) is from (i) to (ix). Therefore, FAP 2 is first added to FAP cluster 
4 while FAP 1 and 3 have no chance to be added to FAP cluster 4 because of the co-tier 
interference with FAP 2. Then, both FAP 4 and 6 are added to FAP cluster 2, while FAP 5 has 
no available FAP clusters. Furthermore, FAP 7 is added to FAP cluster 3, while FAP 8 has no 
chance. Finally, FAP 9 is added to both FAP cluster 1 and 3. The procedure of the multiple 
FAP clustering step is described in Algorithm 1. In order to decide the addition of FAPs to 
other FAP clusters, the FGW first calculates the total spectral efficiency of FAPs in cluster ∗y , 

1R , in line 16 and then once again computes it, 2R , after adding FAP ∗n  in line 18. As a result, 
if 21 RR <  and minγ≥Γn  ( ∗∈∀ yn ), the FGW adds FAP ∗n  to FAP cluster ∗y  as well as setting 

0=∗iya  to avoid co-tier interference in line 20. Otherwise, it does not add FAP ∗n  by setting 

0=∗∗ynz  in line 22. 

 
Algorithm 1 : Multiple cluster assignment (step 1) 
Input: V , thΓ , FC

inL , MC
mnL , V∈∀ ni, , M∈∀m . 

Output: Z . 
Initialization: nyz , nya , 0=inb , 1=inj , V∈∀ ni, , Y∈∀y . 
1:   // Stage 1: group FAPs using GCA from line 2 to 12. 
2:   for n=1 to N do 
3:      Calculate nΓ  according to (11); 
4:      while nΓ>Γth  do 
5:         Find ∗

ni  according to (12); 
6:         Set 0=∗nin

b  in B ;       // Add interfering FAPs 

7:         Calculate nΓ  according to (11); 
8:      end while 
9:   end for 
10:  Create an interference graph using GCA with BJ ~ = ; 
11:  Obtain Y  from the interference graph; 
12:  Generate Z  and A  according to (13) and (14), respectively; 
13:  // Stage 2: add FAPs to other clusters from line 14 to 24. 
14:  while ≠A ∅  do 
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15:     Find ∗n  and ∗y  according to (15) and (16), respectively; 
16:     ;)(1 ∑

∈∀
∗Γ=

Vn
nynE zSR  

17:     Set 1=∗∗ynz  and 0=∗∗yna ; 

18:     ;)(2 ∑
∈∀

∗Γ=
Vn

nynE zSR  

19:     if 21 RR <  and )(min
∗∈∀≥Γ ynn γ  then 

20:        Set 0=∗iya  if 1==∗iya  and 1==∗inj , }{\ ∗∈∀ ni V ; 

21:     else 
22:        Set 0=∗∗ynz ;            // The FGW decides not to add FAPs 

23:     end if 
24:  end while 

 
 

3.2 Step 2: dynamic subchannel assignment 

Dynamic 
subchannel group

(KDG)

Static 
subchannel group

(KSG)
Kmin,4

Cluster 2

Cluster 1

... ...

Cluster 4

Kmin,1

Kmin,2

...

Step 2: dynamic subchannel assignment

Subchannels 
for DFNs

(K)

 

Fig. 3. An example of the dynamic subchannel assignment step with four FAP clusters (Y = 4) in the 
MC-DCA scheme. 

 
In step 2, the FGW dynamically assigns subchannels in K  to FAPs based on ρ  and Z  
obtained by step 1. In order to guarantee the minimum number of subchannels for each FAP, 

|| min,min yK K=  ( Y∈∀y ), the FGW first divides K  into two subchannel groups named static 
subchannel group and dynamic subchannel group, SGK  and DGK , as shown in Fig. 3. SGK  
and DGK  can be obtained by 

.

, min,
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y
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KKK
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G

                                                    (16) 
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In Fig. 3, for example, the FGW has four FAP clusters (Y = 4) thus minmin 4|| KYKSG ==K . 
After assigning subchannels in SGK  to FAPs, some FAPs included in one FAP cluster have 

minK  subchannels while others in multiple FAP clusters have more than minK  subchannels. 
Then, the FGW finds a cluster, ∗∗y , with maximum spectral efficiency of FAP clusters, to 
maximize the mean FAP capacity and dynamically assigns subchannel k ( DGk K∈∀ ) to FAPs. 

∗∗y  can be obtained by 
 

.   , )(maxarg DG

n
nynEy

kzSy K
VY

∈∀







G= ∑

∈∀∈∀

∗∗                               (17) 

 
Using (17) and (18), the FGW assigns subchannel k to FAP n by setting 1=nkω  in Ω  
( KV ∈∀∈∀ kn , ). The procedure of dynamic subchannel assignment step is described in 
Algorithm 2. Meanwhile, some FAPs become satisfied with ρ  before all subchannels in DGK  
are assigned. Therefore, in order to efficiently assign subchannels, the FGW dynamically sets 

ρ=nC  and 0=nyz  ( YV ∈∀∈∀ yn , ) in line 7 and 16 if ρ≥nC . 
 

Algorithm 2 : Dynamic subchannel assignment (step 2) 
Input: K , V , Y , Z . 
Output: Ω . 
Initialization: 0=nkω , V∈∀n , K∈∀k . 
1:   Divide K  into SGK  and DGK  according to (17). 
2:   // Assign subchannels in SGK  from line 3 to 9. 
3:   for y = 1 to Y do 
4:   1=nkω , if 1==nyz  ( V∈∀n , yk min,K∈∀ ); 
5:   Calculate nC  ( V∈∀n , 1==nyz ) according to (7); 
6:      if ρ≥nC  ( V∈∀n , 1==nyz ) then 
7:         Set ρ=nC  and 0=nyz  ( Y∈∀y ); 
8:      end if 
9:   end for 
10:  // Assign subchannels in DGK  from line 11 to 18. 
11:  for k = 1 to | DGK | do 
12:     Find ∗∗y  according to (18); 
13:     1=nkω , if 1==nyz  ( V∈∀n ); 
14:     Calculate nC  ( V∈∀n , 1==nyz ) according to (7); 
15:     if ρ≥nC  ( V∈∀n , 1==nyz ) then 
16:        Set ρ=nC  and 0=nyz  ( Y∈∀y ); 
17:     end if 
18:  end for 
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4. Simulation results and discussions  
In this section, we investigate the performance of the MC-DCA scheme in terms of the mean 
FAP capacity, unsatisfied FUE probability, and mean FAP power consumption for data 
transmission using a Monte Carlo simulation. In order to demonstrate superiority, we compare 
the MC-DCA scheme to four different schemes: dynamic clustering based subband allocation 
(DCSA) [22], GB-DFR [24], graph based static channel assignment (GB-SCA), and frequency 
reuse 1 (FR 1). In the GB-SCA scheme, the FGW first groups FAPs using GCA (i.e., stage 1 in 
subsection 3.1) and assigns   subchannels for each FAP cluster, while in the FR 1 scheme every 
FAP uses all subchannels in K  without considering co-tier interference. The system topology 
and channel assignment for MBSs and FAPs are as shown in Fig. 1. Further, it is assumed that 
the building with DFNs has five floors (F=5), thus, for example, 20 FAPs are randomly 
deployed on each floor when N=100. Log-normal shadow fading is considered with zero mean 
and standard deviation of 4dB and 10dB for macrocell and femtocell networks, respectively 
[28]. The system parameters are listed in Table 1.  

 
Table 1. System parameters. 

Parameter Value 
Carrier frequency ( cf ) 2GHz 

Total bandwidth 4.5MHz 
Bandwidth per subchannel (W) 5KHz 

The numbers of total subchannels, subchannels for MBSs and FAPs/cell site 900, 300, 600 
The number of floors/building (F) 5 
The number of FAPs/building (N) 20, 40, 60, 80, 100 

FUE traffic load ( ρ ) 1 and 1.5Mbps 
The number of FUEs/FAP 1 

The inter-site distance between MBSs (dIS) 1km 
FAP radius ( FC

rd ) 5m 
Distance between the building and MBS (dME) 400m 

The area of the building 50m x 50m 
The height of each floor in the building 3m 

The height of MBSs 25m 
The height of FAPs ( th ) and FUEs ( rh ) 1.5 and 1m 

Min distance between FAPs 3m 
Min distance between the FAP and FUE 0.2m [29] 

MBS’s total transmission power 20W [29] 
FAP’s total transmission power 10mW [29] 

α for commercial and business buildings 22, 30 [27] 
Min number of subchannels ( minK ) 10 
Min and Max SINRs ( minγ , maxγ ) -10dB, 18.5dB [31] 

Min and Max spectral efficiencies ( minr , maxr ) 0.137, 4.4bps/Hz [31] 
Bit error rate ( eP ) 10−3 [30] 

The maximum antenna gain ( gβ ) and maximum attenuation ( maxβ ) 14dB, 20dB [29] 
Standard deviation for the MBS and FAP 4dB, 10dB [29] 

2
Nσ  -174dBm/Hz 
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In addition, we consider two in-building DFN environments using α =22 and 30 for 
commercial and office buildings, respectively, since the system performance is greatly 
influenced by the indoor environments [23]. That is, the commercial building has more open 
space inside compared to that of the office building, thus FAPs have more serious co-tier 
interference in commercial buildings. 
 

4.1 Commercial buildings 
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Fig. 4. Mean FUE capacity vs. thΓ   in commercial buildings. 

 
Fig. 4 describes the results of the mean FAP capacity in commercial buildings as thΓ  

increases when N = 100 and ρ = 1Mbps. The MC-DCA, DCSA, GB-DFR, and GB-SCA 
schemes show convex graphs because the SINR of FUEs increases but the number of 
subchannels per FAP cluster decreases (since Y increases) as thΓ  increases. In other words, 
FAPs use more subchannels with lower SINRs of FUEs when thΓ  is low, and use less 
subchannels with higher SINRs of FUEs when thΓ  is high. Therefore, it is shown that the 
optimum values of thΓ  with maximum mean FAP capacities are 10, 0, 4, and -4dB for the 
MC-DCA, DCSA, GB-DFR, and GB-SCA schemes, respectively. As a result, based on the 
optimum values of thΓ , the MC-DCA scheme outperforms others and is 13, 20, 50, and 147% 
better than the DCSA, GB-DFR, GB-SCA, and FR 1 schemes, respectively. Further, even 
though FAPs have one FAP cluster, the DCSA scheme has better performance than the 
GB-DFR scheme. This is because the DCSA scheme has lower interference between FAPs 
and dynamically assigns subchannels to FAP clusters according to the order of maximum 
capacity of FAP clusters. The GB-DFR scheme shows higher performance than the DCSA 
scheme using more subchannels with increased SINRs of FUEs when thΓ ≥ 3dB but the 
maximum mean FAP capacity is still lower. Then, the GB-DFR scheme has higher 
performance than the GB-SCA scheme since it assigns FAPs to multiple FAP clusters to use 
more subchannels. Finally, the FR 1 scheme has the worst performance with strong co-tier 
interference and is not affected by thΓ  thus the result is always the same at 0.32Mbps. 
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Fig. 5. Unsatisfied FUE probability vs. thΓ   in commercial buildings. 

 
Fig. 5 depicts the results of unsatisfied FUE probability in commercial buildings as thΓ  

increases when N = 100 and ρ = 1Mbps. The MC-DCA, DCSA, and GBDFR schemes show 
concave graphs while the GB-SCA scheme becomes 1 when thΓ ≥ −4dB since all FAPs have 
an insufficient number of subchannels for each FAP cluster. The FR 1 scheme performs better 
than the GB-SCA scheme. Based on the optimum values of thΓ  obtained in Fig. 4, it is shown 
that the unsatisfied FUE probability of the MC-DCA scheme is 25, 33, 52, and 40% lower than 
the DCSA, GB-DFR, GB-SCA, and FR 1 schemes, respectively. 
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Fig. 6. Mean FAP power consumption for data transmission vs. thΓ   in commercial buildings. 

 
Fig. 6 shows the results of mean FAP power consumption for data transmission in 

commercial buildings as thΓ  increases when N = 100 and ρ = 1Mbps. The FR 1 scheme has 
approximately 0.88mW and is much higher than others while the MC-DCA, DCSA, GB-DFR, 
and GB-SCA schemes reduce as thΓ  increases. The MC-DCA and GB-DFR schemes assign 
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FAPs to multiple FAP clusters to use more subchannels thus show higher power consumption 
than the DCSA and GBSCA schemes. However, based on the optimum values of thΓ  obtained 
in Fig. 4, the MC-DCA scheme outperforms others and reduces the power consumption by 
about 15, 25, 9, and 94% compared to the DCSA, GB-DFR, GB-SCA, and FR 1 schemes, 
respectively. Meanwhile, the GB-DFR scheme adds FAPs to available FAP clusters and thus 
shows a higher power consumption compared to the MCDCA scheme but the MC-DCA 
scheme becomes higher when thΓ ≥12dB. This is because the MC-DCA scheme assigns 
subchannels according to the order of maximum spectral efficiency of FAP clusters, thus more 
FAPs with higher SINRs of FUEs use subchannels while the GB-DFR scheme assigns the 
same number of subchannels per FAP cluster, thus FAPs with higher SINRs of FUEs remain 
subchannels in multiple FAP clusters but with lower SINRs of FUEs still need more 
subchannels. 
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Fig. 7. Mean FAP capacity vs. the number of FAPs in commercial buildings: ρ =1Mbps (solid line) and 

1.5Mbps (dotted line). 
 

Fig. 7 describes the results of the mean FAP capacity in commercial buildings as N 
increases when ρ = 1 and 1.5Mbps (solid and dotted lines). We first found the optimum values 
of thΓ  according to different N and ρ  as shown in Table 2 and then used them for performance 
evaluation. The MC-DCA, DCSA, GB-DFR, and GB-SCA schemes have almost the same 
performance when N=20 because of low co-tier interference. On the other hand, the MC-DCA 
scheme shows better performance than others in both ρ = 1 and 1.5Mbps when N > 20 and the 
gap of capacities between the MC-DCA and other schemes is increasingly bigger as N 
increases. As a result, FAPs are greatly influenced by co-tier interference from neighbor FAPs 
and the performance decreases significantly as N increases in commercial buildings. 
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4.2 Office buildings  
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Fig. 8. Mean FUE capacity vs. thΓ   in office buildings. 

 
Fig. 8 describes the results of the mean FAP capacity in office buildings as thΓ  increases 

when N = 100 and ρ = 1Mbps. The DCSA, GB-DFR, and GB-SCA schemes show convex 
graphs while the MC-DCA scheme does not decrease when thΓ > 6dB. This is because the 
MC-DCA scheme uses more subchannels without strong co-tier interference in office 
buildings. Therefore, it is shown that the optimum values of thΓ  with maximum mean FAP 
capacities are 14, 4, 6, and 2dB for the MC-DCA, DCSA, GB-DFR, and GB-SCA schemes, 
respectively. As a result, based on the optimum values of thΓ , the MC-DCA scheme 
outperforms others and is 0.2, 5, 4, and 90% better than the DCSA, GB-DFR, GB-SCA, and 
FR 1 schemes, respectively. Meanwhile, the FR 1 scheme consistently shows the same 
capacity at 0.52Mbps. 
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Fig. 9. Unsatisfied FUE probability vs. thΓ   in office buildings. 
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Fig. 9 depicts the results of unsatisfied FUE probability in office buildings as thΓ  increases 
when N = 100 and ρ = 1Mbps. The DCSA, GB-DFR, and GBSCA schemes show concave 
graphs while the GB-SCA scheme becomes 1 when thΓ ≥ 10dB. Further, the MC-DCA scheme 
shows similar results when thΓ  ≥ 14dB while the FR 1 scheme continuously has the same Pus 
at approximately 0.61. As a result, based on the optimum values of thΓ  obtained in Fig. 8, the 
unsatisfied FUE probability of the MC-DCA scheme is 49, 84, 82, and 90% lower than the 
DCSA, GB-DFR, GB-SCA, and FR 1 schemes, respectively. 
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Fig. 10. Mean FAP power consumption for data transmission vs. thΓ   in office buildings. 

 
Fig. 10 shows the results of mean FAP power consumption for data transmission in office 

buildings as thΓ  increases when N = 100 and ρ = 1Mbps. The FR 1 scheme has approximately 
0.74mW and is much higher than others while the MC-DCA, DCSA, GB-DFR, and GB-SCA 
schemes reduce as thΓ  increases. Based on the optimum values of thΓ  obtained in Fig. 8, the 
MC-DCA scheme reduces the power consumption by about 29, 40, 31, and 87% compared to 
the DCSA, GB-DFR, GB-SCA, and FR 1 schemes, respectively. 
 

Fig. 11 describes the results of the mean FAP capacity in office buildings as N increases 
when ρ = 1 and 1.5Mbps (solid and dotted lines). We use the optimum values of thΓ  as shown 
in Table 2 for performance evaluation. The MC-DCA, DCSA, GB-DFR, and GB-SCA 
schemes have almost the same performance when ρ = 1Mbps while the MC-DCA scheme 
outperforms others when ρ = 1.5Mbps. As a result, in office buildings, FAPs have less co-tier 
interference compared to commercial buildings thus the mean FAP capacity of the MC-DCA, 
DCSA, GBDFR, and GB-SCA schemes is close to 1Mbps until N ≤ 80 when ρ = 1Mbps, 
while is reduced from 40 ≤ N when ρ = 1.5Mbps. Meanwhile, the FR 1 scheme is much lower 
than other schemes and reduces from 20 ≤ N. 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 4, April 2016                                    1551 

20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
Office buildings (ρ = 1 and 1.5Mbps)

M
ea

n 
FA

P
 c

ap
ac

ity
 (M

bp
s)

The numbeρ of FAPs (N)

 

 

MC-DCA
DCSA
GB-DFR
GB-SCA
FR 1

ρ =1.5Mbps

ρ =1Mbps

 
Fig. 11. Mean FAP capacity vs. the number of FAPs in office buildings: ρ =1Mbps (solid line) and 

1.5Mbps (dotted line). 

5. Conclusions 
In this paper, we proposed a novel dynamic channel assignment scheme called MC-DCA to 
improve system performance for DL DFNs based on OFDMA and investigated the MC-DCA 
scheme compared to the DCSA, GB-DFR, GB-SCA, and FR 1 schemes. Further, we 
considered two different DFN environments for commercial and office buildings in which 
FAPs have different co-tier interference effects with each other. Through simulations, we first 
found the optimum values of thΓ  to maximize the system capacity and then evaluated system 
performance in terms of the mean FAP capacity, unsatisfied FUE probability, and mean FAP 
power consumption for data transmission according to different parameters, N and ρ . 
Simulation results showed that the MC-DCA scheme has better performance for not only the 
mean FAP capacity and unsatisfied FUE probability but also the FAP power consumption for 
data transmission. For future work, we are planning to study a multiple cluster based DCA 
scheme with adaptive power control for data transmission to improve system performance of 
DFNs. 
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