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Abstract. To solve inefficient spectrum usage problem under current

static spectrum management policy, various kinds of dynamic spectrum
access strategies have appeared. Myopic policy, which maximizes immedi-

ate throughput, is a simple and robust strategy with reduced complexity.

In this paper, we present a simple mathematical model to evaluate the
saturation throughput and medium access delay of a myopic policy in the

presence of multiple channels.

1. Introduction

The exponential growth in wireless services to share the wireless spectrum
has recently led to an increasing demand for more bandwidth resources and
hence a shortage of them. On the other hand, most spectrum bands suitable for
wireless communication have already been allocated to existing licensees [4, 9].
This expected shortage problem in spectrum supply, which is a major issue for
service providers interested in integrating new wireless services into existing
communication infrastructure, is reported to be due not to spectrum scarcity,
but to current inefficient and static spectrum management policy [11]. Recent
extensive measurement-based studies of spectrum efficiency [2, 10] suggest that
a large portion of the licensed spectrum of deployed wireless communication
network lies unused in space and time [12]. As a solution for the inefficient
spectrum usage, Federal Communications Commission promotes the so-called
dynamic spectrum access, which improves spectrum efficiency by allowing sec-
ondary users not having a license for spectrum usage to occupy a spectrum
owned by licensee named primary user in a manner that limits interference to
primary users [5, 8].

Received April 8, 2013; Accepted January 14, 2014.

2000 Mathematics Subject Classification. 60K25, 68M20.
Key words and phrases. queueing theory; multi-channel; myopic policy; dynamic spec-

trum access.
This research was supported by Basic Science Research Program through the Na-

tional Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-
2013R1A1A4A01013094).

c©2014 The Youngnam Mathematical Society

23



24 YUTAE LEE

Figure 1. Gilbert-Elliot channel model

A tractable approach for the design of efficient dynamic spectrum access is
to consider myopic policies [1, 7, 12], which aim at maximizing only immediate
reward. In [1, 12] the throughput of a myopic policy for two channels has been
derived in closed-form. The authors also discussed the lower and upper bounds
on the throughput of the myopic policy for the case of multiple channels. They
show that the myopic policy is a simple and robust strategy that maximizes
immediate throughput and achieves optimality under certain conditions [1, 12].
Lee [7] presented a mathematical model for the myopic policy in the presence
of only two channels to evaluate the Medium Access Control (MAC) delay as
well as the throughput. The MAC delay is an important performance measure
when the quality of service of secondary users is considered. To reduce the
collision among secondary users, Lee [6] proposed a modified myopic policy
with collision avoidance.

In this paper, to compute the throughput and the MAC delay of secondary
users for the case of multiple positively correlated channels, we provide a sim-
ple and efficient mathematical model for the myopic policy. Based on our
model, we derive the throughput performance and the MAC delay distribution
of secondary users under saturation traffic conditions.

The rest of the paper is organized as follows. We first study the structure
of the myopic policy for the case of multiple positively correlated channels in
Section 2 before presenting our mathematical model in Section 3. We also
evaluate the performance in Section 3.

2. Myopic policy

The myopic policy is shortly summarized in this section. We consider a slot-
ted primary network consisting of N independent and stochastically identical
Gilbert-Elliot channels [3, 13]. As illustrated in Figure 1, the occupancy Si(k),
k ≥ 1 of channel i, i = 1, 2, ..., N , at slot k follows a discrete-time two-state
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Markov chain on state space {0, 1} with one-step transition probability matrix

P =

(
p00 p01
p10 p11

)
.

State 0 represents that the channel is occupied by primary users while state 1
represents that the channel is idle.

We consider a secondary user seeking spectrum opportunities. Limited by its
hardware constraints and energy supply, the secondary user can not observe the
full spectrum. However, it can infer the state from its decision and observation
history. Immediately before the beginning of slot k, k ≥ 1, its knowledge of
the channels’ state is given by its belief vector (λ1(k), λ2(k), ..., λN (k)), where
λi(k), i = 1, 2, ..., N , is the conditional probability that channel i is in state
1 immediately before slot k, given all past decision and observations. In each
slot, if the secondary user has pending packets for transmission, it chooses a
channel to sense. For myopic policy, the user chooses an action to maximize
expected immediate throughput [1, 7, 12], i.e., the index a(k) of the channel
the user selects at slot k is simply given by

a(k) = arg max
1≤i≤N

λi(k)

for k ≥ 1. If the chosen channel is sensed to be idle, the secondary user
transmits its packet. Otherwise, the secondary user does not transmit the
packet. Immediately before the beginning of slot k+ 1, k ≥ 1, the belief vector
is updated based on the action a(k) with observation outcome Θa(k) (indicating
the availability of channel a(k)) as follows [1, 7, 12]: for i = 1, 2, ..., N

λi(k + 1) =

 p01, if a(k) = i and Θa(k) = 0,
p11, if a(k) = i and Θa(k) = 1,
λi(k)p11 + (1− λi(k))p01, if a(k) 6= i.

We set λi(1) as the stationary probability of the channel being idle, that is,

λi(1) =
p01

p01 + p10
,

and choose the initial action randomly.
In this paper, we consider the case of positively correlated channels, that is,

p01 < p11. If channel i is observed to be idle in slot k, the belief probability
λi(k+1) becomes p11. Since λj(k+1) < p11 for j 6= i, channel i is sensed again
in slot k+1 (see Figure 2 in [7]). On the other hand, if channel i is observed to
be busy in slot k, the probability λi(k+ 1) becomes p01. Since λj(k+ 1) > p01
for j 6= i, the channel visited the longest time ago is sensed in slot k + 1 (see
Figure 2 in [7]). Thus, in the case of positively correlated channels, the myopic
action is to stay in the same channel in the next slot if the channel in the
current slot is sensed to be idle. Otherwise, the user switches to the channel
visited the longest time ago [7, 12].
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3. Mathematical analysis

3.1. Saturation throughput and MAC delay

We consider a fixed number N of independent and stochastically identical
Gilbert-Elliot channels. In saturation traffic conditions, the secondary user
always has another packet immediately after the successful completion of a
packet transmission. Let a(k) be the stochastic process representing the index
of the channel the user selects at slot k. Let s(k) be the stochastic process
representing the state of the channel a(k) at slot k. Clearly, the bi-dimensional
process {(a(k), s(k)), k ≥ 1} is non-Markovian.

We consider the case of positively correlated channels, that is, p01 < p11. In
this case, the key approximation in our model is that the probability p that
the switched channel is occupied by primary users is independent on the revisit
time of the channel (this is more accurate as N is larger). In this condition,
the bi-dimensional process {(a(k), s(k)), k ≥ 1} is a discrete-time Markov chain
with the only non-null one-step transition probabilities being

P{a(k+1) = i, s(k+1) = 0|a(k) = i, s(k) = 1} = p10, i = 1, · · · , N,
P{a(k+1) = i, s(k+1) = 1|a(k) = i, s(k) = 1} = p11, i = 1, · · · , N,
P{a(k+1) = i+1, s(k+1) = 0|a(k) = i, s(k) = 0} = p, i = 1, · · · , N−1,

P{a(k+1) = i+1, s(k+1) = 1|a(k) = i, s(k) = 0} = 1−p, i = 1, · · · , N−1,

P{a(k+1) = 1, s(k+1) = 0|a(k) = N, s(k) = 0} = p,

P{a(k+1) = 1, s(k+1) = 1|a(k) = N, s(k) = 0} = 1−p.

Let

πi,j = lim
k→∞

P{a(k) = i, s(k) = j}, i = 1, · · · , N, j = 0, 1,

be the stationary distribution of the chain. Owing to the chain regularities, the
following relations hold:

πi,0 = π1,0, (1)

πi,1 =
1− p
p10

π1,0 (2)

for i = 1, 2, ..., N . The value π1,0 is determined by imposing the normalization
condition

1 =

N∑
i=1

(πi,0 + πi,1) = π1,0N

(
1 +

1− p
p10

)
, (3)

from which

π1,0 =
p10

N(1− p+ p10)
. (4)
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The stationary probabilities πi,j of {(a(k), s(k)), k ≥ 1} are given by

πi,0 =
p10

N(1− p+ p10)
, (5)

πi,1 =
1− p

N(1− p+ p10)
(6)

for i = 1, 2, ..., N .
The saturation throughput Ssat is given by

Ssat =

N∑
i=1

πi,1 =
1− p

1− p+ p10
. (7)

Now we compute the distribution of the MAC delay of a secondary user
under saturation traffic conditions. The MAC delay is defined as the time
needed for a packet to be successfully transmitted, given that the packet is at
the head-of-line position in the buffer. Let dn, n = 1, 2, ..., be the probability
that the MAC delay under saturation traffic condition is n slots. Then

d1 = p11 (8)

dn = p10p
n−2(1− p), n = 2, 3, ... (9)

3.2. Determination of unknown probability p

To finally compute the probability p, we define Ti as the random variable
representing the number of time slots that the secondary user stays continuously
in channel i. Assuming that the probability p is independent on the recurrent
time of a channel, we obtain

P{Ti = n} =

{
p, n = 1
(1− p)(1− p10)n−2p10, n = 2, 3, · · · , (10)

and its z-transform

Ti(z) = E[zTi ] =
∞∑

n=1

P{Ti = n}zn =
pz(1− z) + p10z

2

1− (1− p10)z
. (11)

Let T be the number of time slots that the secondary user stays continuously
in N − 1 different channels, without loss of generality

T = T1 + · · ·+ TN−1. (12)

Since Ti’s are independent and identically distributed, the z-transform T (z) of
T can be obtained as

T (z) = E[zT ] = [T1(z)]
N−1

=

[
pz(1− z) + p10z

2

1− (1− p10)z

]N−1
. (13)
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Note that p is the probability that the switched channel is occupied by
primary users. Thus

p =

∞∑
n=N−1

P{T = n}p(n+1)
00 , (14)

where p
(n)
00 is the n-step transition probability from state 0 to state 0, i.e.,

p
(n)
00 = P{Si(n) = 0|Si(0) = 0}. The probability p

(n)
00 is obtained as follows.

Let

P(n) =
(
p
(n)
ij

)
(15)

be the n-step transitional probability matrix, which satisfies

P(n+1) = P(n) ·P. (16)

Defining the matrix generating function of P(n)’s as

P(z) =

∞∑
n=0

P(n)zn, (17)

we obtain

P(z) = (I− zP)−1. (18)

From the inverse-transform of P(z), we obtain P(n) as follows:

P(n) =

( p10

p01+p10

p01

p01+p10
p10

p01+p10

p01

p01+p10

)
+ (1− p10 − p01)n

( p01

p01+p10
− p01

p01+p10

− p10

p01+p10

p10

p01+p10

)
Hence, we obtain

p
(n)
00 =

p10
p01 + p10

+ (1− p10 − p01)n
p01

p01 + p10
. (19)

Using (13) and (19), (14) becomes

p =

∞∑
n=N−1

P{T = n}
[

p10
p01 + p10

+ (p11 − p10)n+1 p01
p01 + p10

]
=

p10
p01 + p10

+
p01

p01 + p10
(p11 − p10)T (p11 − p10)

=
p10

p01 + p10
+

p01
p01 + p10

(p11 − p10)

×
[
p(p11 − p10)(p10 + p01) + p10(p11 − p10)2

1− (1− p10)(p11 − p10)2

]N−1
. (20)

Now, we show that (20) has unique solution in 0 ≤ p ≤ 1. Defining

f(p) =
p01 + p10

p01(p11 − p10)

[
p− p10

p01 + p10

]
, (21)

g(p) =

[
(p11 − p10)(p10 + p01)

1− (1− p10)(p11 − p10)
p+

p10(p11 − p10)2

1− (1− p10)(p11 − p10)

]N−1
,(22)
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Eq. (20) becomes f(p) = g(p). Note that f(0) < 0, f(1) > 1, the coefficient of
pN−1 in g(p) is positive, and g(p∗) = 0 for p∗ = −p10(1−p01−p10)/(p01+p10) <
0. Furthermore, since

g(1) =

[
(1− p10 − p01)(p10 + p01) + p10(1− p10 − p01)2

1− (1− p10)(1− p10 − p01)2

]N−1
< 1, (23)

Eq. (20) has unique solution in 0 ≤ p ≤ 1.
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