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Abstract 
 

This paper investigates the channel selection problem with dynamic users and the asymmetric 
interference relation in distributed opportunistic spectrum access systems. Since users 
transmitting data are based on their traffic demands, they dynamically compete for the channel 
occupation. Moreover, the heterogeneous interference range leads to asymmetric interference 
relation. The dynamic users and asymmetric interference relation bring about new challenges 
such as dynamic random systems and poor fairness. In this article, we will focus on 
maximizing the tradeoff between the achievable utility and access cost of each user, formulate 
the channel selection problem as a directional graphical game and prove it as an exact potential 
game presenting at least one pure Nash equilibrium point. We show that the best NE point 
maximizes both the personal and system utility, and employ the stochastic learning approach 
algorithm for achieving the best NE point. Simulation results show that the algorithm 
converges, presents near-optimal performance and good fairness, and the directional graphical 
model improves the systems throughput performance in different asymmetric level systems. 
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1. Introduction 

Opportunistic spectrum access (OSA) has recently drawn great attention as a promising 
technique for solving the spectrum shortage [1,2]. Among the reproted works, the common 
preassumptions for users and interference are as follows. Users are transmitting all the time, 
and the interference between two users is symmetric. However, in practical applications, 
whether users will transmit depend on their traffic demands, which means they are switched 
between active and inactive. Besides, due to the fact that different users have different 
interference ranges, they may not affect each other at the same time. Thus, the interference 
relations among users are not always symmetric, As a result, the channel selection problem in 
OSA systems with dynamic users and asymmetric interference relation is more practical. 
However, it has drawn quite little attention. 

This paper focuses on the channel selection problem of dynamic users and asymmetric 
interference relation in distributed OSA systems. Compared with the static users, dynamic 
users exhibit some differences. For example, in the dynamic user situation, when all users 
keep their channel selections unchanged, the interference level and the throughput rewards 
received in each slot may be random and uncertain. In contrast, in the static situation, these 
feedbacks are static and determined. In addition, dynamic users lead to poor fairness. When 
sharing the same channel, the users with high active probabilities seize the transmitting 
opportunity from the low active probabilities ones. Thus, the ratio of their throughput does not 
match with their active probabilities, which is unfair and should be avoided. Moreover, the 
asymmetric interference relation between the users yields a more intractable channel selection 
by unilateral influence. To the best of our knowledge, no work has been reported the analysis 
of the asymmetric interference relations using graphical game solutions, while only few 
simulation work have been presented in [3,4]. Therefore, solving the channel selection 
problem between the presence of dynamic users and asymmetric interference relation is a 
challenging task. 

Here, we assume that, at each time slot, each user is randomly active or inactive. In addition, 
we consider that the interference relation between users may be asymmetric, and then model it 
as a directional graph. We focus on the trade-off between the achievable utility and the access 
cost of each user.  The channel selection problem is formulated as a directional graphical game. 
Moreover, the proposed system model employs the stochastic learning approach (SLA) [5]. 
Simulation results show that the SLA algorithm achieves near optimal performance and the 
directional graphical model improves the system’s throughput. 

The contributions of this paper are as follows. 
 A practical situation, where the interference relationship is asymmetric and the users 

randomly transmit the data based on their dynamical traffic demands is considered in 
this paper.  

 The channel selection problem of the dynamic users and asymmetric interference 
relation is modeled as a directional graphical game. The proposed game is proved an 
exact potential game with at least one pure Nash equilibrium point.  

 The stochastic learning algorithm is employed for the proposed game. Besides, while 
the access fails, the traditional positive access reward and users may also update the 
strategies with the negative access cost.  
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 The simulation results show that the SLA algorithm achieves a near-optimal 
throughput performance with good fairness. The directional graphical model improves 
the system’s throughput compared with non-directional models. 

The rest of this paper is organized as follows. Section II presents related works. Next, 
Section III introduces the system model and formulate the problem. Then, we propose the 
directional graphical game in Sec. IV, and present its properties and modify the stochastic 
learning solution of the system model. Section V provides the simulation and discussion of the 
results, and Finally, Sec. VI concludes the paper. 

2. Related Works 
Over the past decades, game theory has been widely applied in solving the problem of 

distributed channel selection of OSA systems. However, most of the reported game models are 
non-spatial, which ignore the spatial relation among users. To overcome this issue, the 
graphical games have been recently proposed [3, 4, 6-9]. In [3], a graphical game formulation 
for distributed channel selection is introduced. The same problem is studied using the local 
minority game [6]. Authors in [8] realized a global optimization through the local altruistic 
game and local congestion game. They extended the graphical games to the partially 
overlapping channels situations in [9] and investigated the interference mitigation game in [4]. 
However, similar with other literatures, these graphical game models assume static users and 
symmetric interference relation. 

Recently, the channel selection problem with dynamic users has regained attention. 
Authors in [10] studied the users’ dynamic characteristics in distributed OSA systems. They 
focused on the interference mitigation while we studied the tradeoff between the achievable 
utility and the access cost. However, minimizing the interference level is not sufficient since 
the throughput directly reflects the system performance while the interference does not. 
Besides, they considered a symmetric interference relation, while this paper studies an 
asymmetric one, which is more common and practical. The most related work to the proposed 
problem in this paper was reported in [11], where the channel selection problem with spatial 
reuse dynamic users was investigated. However, they studied the problem considering users 
with fixed locations and user mobility, while the present study considers the asymmetric 
interference relation.  

A research related of asymmetric interference is published recently. Authors studied the 
antenna selection and power allocation techniques to further improve the performance of 
topology management in asymmetric interference networks in [24]. Another recent work [25] 
is about the interference align and they proposed a spectrum-efficient topology management 
scheme to interference align in asymmetric networks. Compared with the existing asymmetric 
interference works, we focused on the channel selection problem in opportunistic spectrum 
access and solved it in a game-theoretic approach. 

Opportunistic spectrum access has been recently applied to many problems. For instance, 
the Quality of Experience (QoE) of the users with less information exchange [17], and the 
anti-jamming problem through a cooperative spectrum access mechanism [18]. Besides, the 
network selection and the channel access may be combined to share the spectrum in 5G [19]. 
The spectrum sensing and access may be joint to provide a better throughput by a more 
accurate sensing result [20-21]. Also, the OSA is applied in the energy issues and some 
interesting problems are modeled as in it, such as energy harvesting and smart grids [22-23].  
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The difference between the present study and previous works may be categorized as 
follows: (i) We consider a problem with dynamic users instead of static users. (ii) An 
asymmetric interference relation between the users is assumed and the channel selection game 
is formulated as a directional graphical game. (iii) We make a tradeoff between the achievable 
utility and access cost. 

3. System Model and Problem Formulation 

3.1 System Model 
Consider a distributed OSA system with multiple users and channels, where the set of 

users and the set of channels are denoted by N  = {1, 2… N} and M  = {1, 2… M}. We 
ignore the situation that users may experience different channel conditions and assume that 
each channel offers the same transmitting rate for every user [12]. Denote the transmitting rate 
of the channel m as Rm, m∈M. Similar assumption may be found in IEEE 802 standards. 
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Fig. 1. An example of directional graphic interference model. 

In practical communication systems, the users considerably affect some of the adjacent 
users. We use a directional graphical model to describe the users’ local interference relation, 
and define the interference relation between user n and user m as δ(m,n) as 

1,user affects user
( , )

0,user doesnotaffect user
m n

m n
m n

d


= 


                                  (1) 

Furthermore, the situation of asymmetric interference relation is considered, where user n 
affects user m but not in the opposite way. The heterogeneous interference range represents the 
main reason leading to the asymmetric interference relation. We use an example to show the 
directional graphic model of interference relation in Fig. 1. The directions of arrows describe 
the interference relation between two users. The neighbor set of user n, Jn, is defined as  

{ : ( , ) 1, / }nJ m m n m M nδ= = ∈                                          (2) 
as the user set affecting the user n. 

In many other related literatures, users are transmitting data all the time, while in reality, 
users transmitting the data are based on their traffic demand. Here, we assume that users are 
active to content for the channels with probability. The active probability for contending is 
defined as ,0 1,i i i Nθ θ< < ≤ . Besides of the users’ dynamic participation, we assume the 
following other practical characteristics of the OSA systems. (i) No centralized controller 
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exists and the users make decisions, in a distributive and autonomous manner. (ii) No 
information exchange occurs between the users, while the users do not have any information 
about the others. For each user, the only helpful information is the access history. 

The system transmitting structure is slotted, where for the active users, at the beginning of 
the slot, they only select one channel to access. If two neighbors both select the same channel 
for one slot, they collide and both fail in this slot. However, for two non-neighbor users that 
are far from each other, they may successfully transmit the data on the same channel and the 
same time slot. At the end of the slot, users update their channel selection strategies. 
Remark 1: Note that here, the interference model of the users is a directional graph, which 
describes a more practical system than the non-directional. However, the directional graphical 
interference model is not well studied in the existing works. 

3.2 Problem Formulation 
The channel selection of user n is defined as an∈M. The utility of user n receiving from 

one slot is expressed as 
, user  successfully transmits the data 

( ) , user  fails to transmit
 0,user  is inactive

na

n

R c n

r j c n
n

−
= −



                  (3) 

where c is the normalized access cost. The reason to consider the tradeoff between the 
throughput and access cost is as follows. (i) The contention behavior cost energy and time, and 
(ii) with the help of cost, it is easy to distinguish the inactive and fail situations. Users may also 
learn about the channel information from the fail experience.  

Based on the description in the system model, user n accesses the channel successfully only 
when user n is active and its neighbors with same channel selection are inactive. Consider the 
active probabilities of user n and its neighbors Jn, the expected utility of user n is as follows, 

1 2
,

( , ,..., ) (1 )
n

n i n

n N a n i n
i a a

u a a a R cθ θ θ
∈ =

= − −∏
J

,                      (4) 

where 
,

(1 )
n

n i n

a n i
i a a

R θ θ
∈ =

−∏
J

 in Eq. (4) is the throughput received from the channel an, and 

ncθ  is the access cost. Define the ratio between the utility and active probability of user n as 
/n n nv u θ= , which successfully reflects the efficiency of transmitting data. We use Jain’s 

Fairness Index (JFI) [13] to describe system fairness as  
2

1

2

1

( )
N

n
n

jfi N

n
n

v
V

N v

=

=

=
∑

∑
.                                                               (5) 

The system objective in this paper is to find the optimal channel selection profile 
1 2( , ,..., )Nopt a aa a=



 to maximize each user’s rewards iu . Formally, 

arg max , .opt ia u i= ∀ ∈N

                                                    (6) 
It may be seen that solving the problem in Eq. (6) is a challenge, since (i) there is no 

control center for user to coordinate, and (ii) users do not know other users’ strategies, actions 
and active probabilities. Thus, a distributed approach for users’ dynamic participation in an 
unknown dynamic environment is desirable. 
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4. Directional Graphical Game and Stochastic Learning Approach 

4.1 Directional Graphical Game Model with Dynamic Users 
We formulate the channel selection problem as a non-cooperative game because the users 

make their own decisions in a distributive and autonomous manner. The game is denoted as 
{ , , , }n n nu=G N A J , where N  is the users set and nA  is the action space of the user n, nJ  is 

the topology of the user n and un is the utility function. The action space of all users is exactly 
the channel set, i.e., n M=A , and the topology, nJ , of user n is the user’s neighbor set. 
Generally, the utility function is denoted as ( , )n n nu a a− , where na  is the action of the user n 
and na−  is the action set of other users excluding the user n. According to the graphical model, 
the user n can only be affected by its neighbors instead of all other users. Thus, the utility 
function may be expressed as ( , )

nn nu a aJ , where 
n

aJ  is the action set of user’s neighbors. We 
define the utility function as 

,
( , ) (1 )

n n n

n i n

n n a n i a n
i a a

u a a R R cθ θ θ
∈ =

= − −∏J
J

                                 (7) 

The utility function is the same as the throughput reward considering access cost of user n. 
Then, the proposed channel selection game with users’ dynamic participation is expressed as 

: max ( , ),
nn nu a a n∀ ∈JG N                                                     (8) 

 

4.2 Analysis of the Nash Equilibrium 
In this subsection, we first define the Nash equilibrium (NE) and the exact potential game 

of the game G . 
Definition 1 (Nash Equilibrium): A channel selection profile * * *

1 2( , ,..., )NE Na a a a=  is a pure 
strategy NE if and only if no user can improve its utility by deviating unilaterally, i.e., 

* * * *( , ) ( , ), , ,
n nn n n n n n n nu a a u a a n a a a≥ ∀ ∈ ∀ ∈ ≠J J N A                        (9) 

Definition 2 (Exact Potential Game) [14]: A game [ , , , ]n n nu=G N A J  is an exact potential 
game if there exists a function Φ  such that 

( , ) ( , ) ( , ) ( , ),
n nn n n n nn n na a a a u a a u a a− −Φ −Φ = −J J

*,n n n na a a∀ ∈ ≠A   (10) 

The function Φ  is called an exact potential function for the game G . 
Theorem 1: The channel selection game G  is an exact potential game which has at least 

one pure strategy NE point. 
Proof: To prove this theorem, we form a potential function as  

,
( , ) [1 (1 )]

n i

n i m
m M i a m

n
n

a a Rθ
∈ ∈∈ + =

−Φ = − −∑ ∏
J

,                             (11) 

where
,

[1 (1 )]
n i

i
m M i n a m

θ
∈ ∈∈ + =

− −∑ ∏
J

is the idle probability of channel m. The potential function’s 

physical meaning is the sum occupancy of resource for user n. 
Suppose that an arbitrary player n unilaterally changes its channel selection from na  to 

na . Then, the change of the utility function reads 
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(1 ) (1 )
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θ θ θ θ θ θ

θ θ θ θ
= =

= =

−
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                      (12) 

When user n changes its channel selection from na  to na , it only affects these two 
channels occupy situations and other channels are unaltered. Thus, the change of the potential 
function is made up of only two occupy situations of channel na  and na . Formally, 

( , ) ( , )
[1 (1 )] [1 (1 ) (1 )]

[1 (1 ) (1 )] [1 (1 )]

(1 ) (1 )

( , ) ( , )

n n

i n i n

n n

i n i n

n n

i n i n

n n

n n n

a i a n i
a a a a

a n i a i
a a a a

a n i a n i
a a a a

n n n

n

n

a a a a
R R

R R

R R

u a a u a a

θ θ θ

θ θ θ

θ θ θ θ

−

= =

=

−

=

= =

Φ −Φ

= − − + − − −

− − − − − − −

= − − −

= −

∏ ∏

∏ ∏

∏ ∏

J J

                  (13) 

It may be seen from Eq. (13) that the change of the utility function, caused by any player’s 
unilateral deviation, is the same as the change of the potential function. According to the 
definition of the exact potential game [14], the channel selection game G  is an exact potential 
game with potential function Φ  and there is at least one pure strategy NE point. Therefore, 
Theorem 1 is proved. 
Remark 2: Although higher resource occupancy does not always lead to higher throughput, it 
is still a necessary condition to achieve a high throughput. The NE point of the directional 
graphical game G  maximizes the resource occupancy and the utility of each user with a large 
probability at the same time. Hence, it is important and necessary to find the NE point of the 
game. 
 

4.3 Modified Stochastic Learning Approach 

Algorithm 1: Modified stochastic learning approach 

Initialization: In j = 0 slot, each user initializes the channel selection probability vector 
( ) 1 / , , {1,..., }nmp j M n m M= ∀ ∈ ∈N . 

Loop for: 1,2,...,j =  
At the beginning of the jth slot, each user decides to be active or not according to its active 
probability. For the active users, they select one channel based on their channel selection 
probability ( )n jp . Users successfully transmit their data or collide with other users. At the 
ending of jth slot, each user n receives a rewards ( )nr j  specified by Eq. (3). All the users 
compute a temporary channel selection probability by the following rules:  

( 1) ( ) ( )(1 ( )), ( )
( 1) ( ) ( ) ( ), ( )

nm nm n nm n

nm nm n nm n

p j p j br j p j m a j
p j p j br j p j m a j
′ + = + − =
′ + = − ≠

                      (14) 
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where 0 < b < 1 is the learning parameter. Update the channel selection probabilities by Eq. 
(15): 

( ), , ( 1) 0,
( 1)

( 1),otherwise
nm nm

nm
nm

p j m p j
p j

p j
′∃ ∈ + <

+ =  ′ +

M
                                (15) 

 
which means if the temporary probability is not possible, i.e. ( 1) 0nmp j′ + < , the channel 
selection probability keeps the same, and if possible, it updates as the temporary probabilities. 
End loop 
 

To achieve the NE point of the potential games, many algorithms have been reported, such 
as the best response [15], fictitious play [16], and spatial adaptive play [8]. However, some of 
them require to know all other users’ actions of the game, which is hard to achieve in the 
distributed systems. In this paper, we use the stochastic learning approach [5] to achieve the 
NE point of the channel selection game, which is described in Algorithm 1. 

 
Initialization

Generate the user 
active state 

Select the channel 
and access

Achieve the access 
results

Update the channel 
selection probability

Convergence?

Finish

N

Y

 
Fig. 2. The flow chart of the modified stochastic learning algorithm.  

 
We slightly adjust the algorithm to adapt it to the dynamic users. In the proposed system 

model, users are not always learning. In fact they are inactive sometimes. Thus, when users are 
active, they update their channel selection probabilities according to the updating rules, and 
when inactive, the channel selection probabilities keep the same. When users fail to access the 
channel, the utility function of the users may be negative. Based on the design of the updating 
rules, the mechanism of negative rewards decreases the selection probability of the failed 
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channel but increases the probabilities of other channels. Through the negative utility, users 
learn from the failure and update their strategies. When the channel selection probability pnm is 
close to zero, it may become negative if it is punished again. To avoid this situation, the 
temporary probabilities are checked before updating. In this way, the channel selection 
probabilities keep in the range from zero to one. The flow chart of the modified SLA is shown 
in Fig. 2. 
Theorem 2. The stochastic learning approach based on the dynamic users converges to a 
pure NE point of G. 

Proof: The proof is similar with the Theorem 6 in [5] and is omitted here. 

Remark 3: It is noted that the SLA algorithm finally converges to the NE point, which 
maximizes the personal utility and a large possible to maximize system utility. The three kinds 
of rewards, i.e., positive, negative and zero, match the three kinds of user behaviors, i.e., 
successful, failed or inactive. Compared with another SLA algorithm [5], which has only 
positive and zero rewards, the negative rewards make users adjust their strategies through the 
failed experience, similar with the negative feedback. The designed updating rules ensure that 
the channel selection probability has a clear physical meaning. 

5. Simulation Results and Discussion 
This Section presents the simulation results of the stochastic learning approach (SLA) 

algorithm. First, the convergence behavior of the algorithm is given out. Then, we compare the 
algorithm’s throughput and fairness performance with the exhaustive approach algorithm and 
random access. All the users are located in a 1000m×1000m square area. The interference 
range set of the users is [250; 300; 350] and the users randomly select one from the set as their 
range in the simulation. The channel rate is normalized, 0 1,mR m< < ∈M . The presented 
results are achieved by simulating 5000 independent trials, where each trial relocates the users 
position, and reset the active probabilities and the channel rates.  

5.1 Convergence Behavior 
Fig. 3 shows the channel selection probability convergence. Consider an arbitrary user of 

the OSA system with three channels and ten users. The learning algorithm updates the 
probabilities. Finally, the probability of the selection of Channel 2 increases nearly to one and 
the probabilities of the selection of other channels decrease to zero. When the iteration is about 
110, it is shown that these probabilities remain the same for several continuous slots. This is 
due to the fact that users are inactive in these slots and they do not learn and update.  
 

Fig. 4 shows the modified SLA convergence cumulative distribution function (CDF). We 
change the active probability from 0.3 to 0.7 with 10 users. From the figure, with the active 
probability increasing, the algofithm convergences more rapidly. According to the simulation 
results, the average convergence iteration is about 418, 299 and 236 for the corresponding 
probability.  
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Fig. 3. Channel selection probabilities evolutionary process of a user. 
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Fig. 4. The modified SLA convergence CDF with different active probabilities. 

 

5.2 Throughput and Fairness Performance 
Then we compare the SLA algorithm with other algorithms, i.e. the exhaustive approach 

and a random access algorithm. A center controller in the exhaustive approach searches all the 
channel selection strategies and finds the optimal one as the final selection, while the random 
approach randomly selects the channels. 

Fig. 5 plots the utility performance. Since the exhaustive approach searches the best 
channel selection from all the possible ones, too much time is required for a large number of 
users. Thus, we only simulated the exhaustive approach when number of users N is less than 
10. The SLA algorithm provides better performance than the random approach and is close to 
the exhaustive approach. Fig. 6 compares the fairness of the algorithms. The JFI of SLA 
algorithm is above 0.9, which represents a good fairness. 
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Fig. 6. Fairness performance comparison. 

 

Fig. 7 investigates the throughput with different number of users and active probabilities. 
With the increase of the number of users N and active probabilities θ , the system utility 
initially increases but finally decreases after N reaches a large number and θ  close to one. The 
reason is that for too many active users in the system, each user is affected by too many other 
users and the system congestion significantly increases to an intolerant level. As a result of the 
high collusion, the system utility decreases. Based on the ALOHA mechanism in the system 
model, for two or more active users in a channel, neither of them would successfully accesses 
and receives a reward. Therefore, when the numbers and active probabilities of the users are 
increasing up to some certain value, the users cannot avoid the contention anymore and the 
network throughput slowly increases and even decreases, just as the curve of N=30. 
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Fig. 7. Utility comparison in the homogeneous systems. 

 

3.2 Throughput in Different Asymmetric Level Systems 
Fig. 8 illustrates the classification of the interference asymmetric levels into three types, 

i.e. all-asymmetric, partly-asymmetric and symmetric levels. We also compare the throughput 
performance in different interference asymmetric level systems. As Fig. 9 plots, the 
asymmetric situations are better than the symmetric ones. About 15% and 24% improvement 
compared with symmetric situation for 25 users, while the advantage is increasing with the 
number of users. Therefore, the directional graphical model is a more exact description and 
significantly promotes the systems throughput. 
 

Above all, the simulation results indicate that: (i) The SLA algorithm converges well for 
all types of system models. (ii) The SLA algorithm gives good utility close to exhaustive 
approach. (iii) The fairness performance of the SLA algorithm is also good, and (iv) compared 
with non-directional model, the directional promotes the throughput performance. 
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Fig. 8. Different asymmetric level models. 
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6. Conclusion 
The channel selection problem in the distributed OSA systems with dynamic users is 

studied in this paper. To show the users dynamic characteristics, we assumed that at each time 
slot, users randomly transmit the data. To address the asymmetric interference relation 
between the users, the problem is modeled into a directional graphical game. We proved the 
directional graphical game as an exact potential game, having at least one NE point. It is also 
shown that the best NE point maximizes the personal utility with the system utility. The 
stochastic learning algorithm is modified for the system. The simulation results verified the 
convergence of the stochastic learning algorithm, achieving near-optimal performance with 
good fairness. The throughput in different asymmetric level systems is compared and found 
the directional graphical model that improves the systems utility. 
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