• Title/Summary/Keyword: dry-etch

Search Result 201, Processing Time 0.032 seconds

The Dry Etching Properties on TiN Thin Film Using an N2/BCl3/Ar Inductively Coupled Plasma

  • Woo, Jong-Chang;Joo, Young-Hee;Park, Jung-Soo;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.4
    • /
    • pp.144-147
    • /
    • 2011
  • In this work, we present a study regarding the etching characteristics on titanium nitride (TiN) thin films using an inductively coupled plasma system. The TiN thin film was etched using a $N_2/BCl_3$/Ar plasma. The studied etching parameters were the gas mixing ratio, the radio frequency (RF) power, the direct current (DC)-bias voltages, and the process pressures. The baseline conditions were as follows: RF power = 500 W, DC-bias voltage = -150 V, substrate temperature = $40^{\circ}C$, and process pressure = 15 mTorr. The maximum etch rate and the selectivity of the TiN to the $SiO_2$ thin film were 62.38 nm/min and 5.7, respectively. The X-ray photoelectron spectroscopy results showed no accumulation of etching byproducts from the etched surface of the TiN thin film. Based on the experimental results, the etched TiN thin film was obtained by the chemical etching found in the reactive ion etching mechanism.

Dry Etching Properties of TiO2 Thin Film Using Inductively Coupled Plasma for Resistive Random Access Memory Application

  • Joo, Young-Hee;Woo, Jong-Chang;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.3
    • /
    • pp.144-148
    • /
    • 2012
  • In this work, we investigated to the etching characteristics of $TiO_2$ thin film and the selectivity using the inductively coupled plasma system. The etch rate and the selectivity were obtained with various gas mixing ratios. The maximum etch rate of $TiO_2$ thin film was 61.6 nm/min. The selectivity of $TiO_2$ to TiN, and $TiO_2$ to $SiO_2$ were obtained as 2.13 and 1.39, respectively. The etching process conditions are 400 W for RF power, -150 V for DC-bias voltage, 2 Pa for the process pressure, and $40^{\circ}C$ for substrate temperature. The chemical states of the etched surfaces were investigated with X-ray photoelectron spectroscopy (XPS). Its analysis showed that the etching mechanism was based on the physical and chemical pathways in the ion-assisted physical reaction.

The Dry Etching Characteristics of TiO2 Thin Films in N2/CF4/Ar Plasma

  • Choi, Kyung-Rok;Woo, Jong-Chang;Joo, Young-Hee;Chun, Yoon-Soo;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.1
    • /
    • pp.32-36
    • /
    • 2014
  • In this study, the etching characteristics of titanium dioxide ($TiO_2$) thin films were investigated with the addition of $N_2$ to CF4/Ar plasma. The crystal structure of the $TiO_2$ was amorphous. A maximum etch rate of 111.7 nm/min and selectivity of 0.37 were obtained in an $N_2/CF_4/Ar$ (= 6:16:4 sccm) gas mixture. The RF power was maintained at 700 W, the DC-bias voltage was - 150 V, and the process pressure was 2 Pa. In addition, the etch rate was measured as functions of the etching parameters, such as the gas mixture, RF power, DC-bias voltage, and process pressure. We used X-ray photoelectron spectroscopy to investigate the chemical state on the surface of the etched $TiO_2$ thin films. To determine the re-deposition and reorganization of residues on the surface, atomic force microscopy was used to examine the surface morphology and roughness of $TiO_2$ thin films.

A Study of Machining Optimization of Parts for Semiconductor Plasma Etcher (반도체 플라즈마 식각 장치의 부품 가공 연구)

  • Lee, Eun Young;Kim, Moon Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.28-33
    • /
    • 2020
  • Plasma etching process employs high density plasma to create surface chemistry and physical reactions, by which to remove material. Plasma chamber includes silicon-based materials such as a focus ring and gas distribution plate. Focus ring needs to be replaced after a short period. For this reason, there is a need to find materials resistant to erosion by plasma. The developed chemical vapor deposition processing to produce silicon carbide parts with high purity has also supported its widespread use in the plasma etch process. Silicon carbide maintains mechanical strength at high temperature, it have been use to chamber parts for plasma. Recently, besides the structural aspects of silicon carbide, its electrical conductivity and possibly its enhanced life time under high density plasma with less generation of contamination particles are drawing attention for use in applications such as upper electrode or focus rings, which have been made of silicon for a long time. However, especially for high purity silicon carbide focus ring, which has usually been made by the chemical vapor deposition method, there has been no study about quality improvement. The goal of this study is to reduce surface roughness and depth of damage by diamond tool grit size and tool dressing of diamond tools for precise dimensional assurance of focus rings.

Dry etch of Ta thin film on MTJ stack in inductively coupled plasma (ICP를 이용한 MTJ stack 위의 Ta 박막의 식각 특성 연구)

  • Kim, Dong-Pyo;Woo, Jong-Chang;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.29-29
    • /
    • 2009
  • 현재 고집적 비휘발성 메모리 소자로는 MRAM (Magnetic Random Access Memory)과 PRAM (Phase Magnetic Random Access Memory)이 활발하게 미국과 일본, 한국 등에서 다양한 연구가 진행되어 오고 있다. 이 중에서 MRAM은 DRAM과 비슷한 10 ns의 빠른 읽기/쓰기 속도와 비휘발성 특성을 가지고 있으며, 전하를 저장할 커패시터가 필요 없고, 두 개의 자성충에 약 10 mA 정도의 전류를 가하면 그때 발생하는 약 10 Oe의 자장을 개개의 비트를 write하고, read 시에는 각 비트의 자기저항을 측정함으로써 데이터를 저장하고 읽을 있으므로, 고집적화가 가능성하다 [1]. 현재 우수한 박막 재료가 개발 되었으나, 고집적 MRAM 소자의 양산에는 해결 하여야 하는 문제점이 있다. 특히 다층 박막으로 구성되어 있으므로 식각 공정의 개발이 필수적이다. 지금까지 MRAM 재료의 식각은 주로 Ion milling, ICP, ECR등의 플라즈마 장치를 되었고, 식각 가스로는 할로겐 기체와 금속카보닐 형성을 위한 Co/$NH_3$$Ch_3OH$ 기체가 이용되고 있다. 그러나 할로겐 계열의 기체를 사용할 경우, 식각 부산물들의 높은 끓는점 때문에 식각 부산물이 박막의 표면에서 열적 탈착에 의하여 제거되지 않기 때문에 높은 에너지를 가지는 이온의 도움에 의한 식각이 필요하다. 또한 Cl 계열의 기체를 사용할 경우, 식각 공정 후, 시료가 대기에 노출되면 대기 중의 수분과 식각 부산물이 결합하여 부식 현상이 발생하게 된다. 그러므로 이를 방지하기 위한 추가 공정이 요구된다. 최근에는 부식 현상이 없고, MTJ 상부에 사용되는 Ta 또는 Ti Hard mask와의 높은 선택비를 가지는 $CH_3OH$ 또는 CO/$NH_3$가 사용되고 있다. 하부 박막에 따른 식각 특성에 연구와 다층의 박막의 식각 공정에 발생에 관한 발표는 거의 없다. MRAM을 양산에 적용하기 위하여서는 Main etch 공정에서 빠른 식각 공정이 필요하고, Over etch 공정에서 하부박막에 대한 높은 선택비가 요구된다. 그러므로 본 논문에서는 식각 변수에 따른 플라즈마 측정과 표면 반응을 비교하여 각 공정의 식각 메커니즘을 규명하고, Main Etch 공정에서는 $Cl_2$/Ar 또는 $BCl_3$/Ar 가스를 이용하여 식각 실험을 수행하고, Over etch 공정에는 낮은 Ta 박막 식각 속도를 가지는 $Ch_4/O_2$/Ar 또는 $Ch_3OH$/Ar 가스를 이용하고자 한다. 플라즈마 내의 식각종과 Ta 박막과의 반응을 XPS와 AES를 이용하여 분석하고, 식각 공정 변수에 따른 식각 속도, 식각 선택비와 식각 프로파일 변화를 SEM을 이용하여 관찰한다.

  • PDF

Dry etching of Si by direct DC biasing (직접 인가된 DC 바이어스에 의한 Si의 건식 식각)

  • Ahn, H.J.;Moon, S.H.;Lee, J.S.;Shim, K.H.;Yang, J.W.;Shin, H.C.;Lee, K.H.;Lee, J.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.162-163
    • /
    • 2007
  • The dry etching of Si was investigated using direct dc biasing to the Si substrate. The TCP type etching system with a feed-through for applying a dc bias was used in the etching. The applied dc bias and ICP power was varied to examine the effect on the etching at the fixed chamber pressure and $SF_6$ flow rate of 10 mTorr and 10 sccm during. When the plasma was generated at ICP power of 100 W, the etch rate of Si was increased with the bias for the biased samples. However, the etching of Si for the non-biased sample was enhanced for the increased ICP power.

  • PDF

Etching Property of the TaN Thin Film using an Inductively Coupled Plasma (유도결합플라즈마를 이용한 TaN 박막의 식각 특성)

  • Um, Doo-Seung;Woo, Jong-Chang;Kim, Dong-Pyo;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.104-104
    • /
    • 2009
  • Critical dimensions has rapidly shrunk to increase the degree of integration and to reduce the power consumption. However, it is accompanied with several problems like direct tunneling through the gate insulator layer and the low conductivity characteristic of poly-silicon. To cover these faults, the study of new materials is urgently needed. Recently, high dielectric materials like $Al_2O_3$, $ZrO_2$ and $HfO_2$ are being studied for equivalent oxide thickness (EOT). However, poly-silicon gate is not compatible with high-k materials for gate-insulator. To integrate high-k gate dielectric materials in nano-scale devices, metal gate electrodes are expected to be used in the future. Currently, metal gate electrode materials like TiN, TaN, and WN are being widely studied for next-generation nano-scale devices. The TaN gate electrode for metal/high-k gate stack is compatible with high-k materials. According to this trend, the study about dry etching technology of the TaN film is needed. In this study, we investigated the etch mechanism of the TaN thin film in an inductively coupled plasma (ICP) system with $O_2/BCl_3/Ar$ gas chemistry. The etch rates and selectivities of TaN thin films were investigated in terms of the gas mixing ratio, the RF power, the DC-bias voltage, and the process pressure. The characteristics of the plasma were estimated using optical emission spectroscopy (OES). The surface reactions after etching were investigated using X-ray photoelectron spectroscopy (XPS) and auger electron spectroscopy (AES).

  • PDF

Dry Etching Characteristics of Zinc Oxide Thin Films in Cl2-Based Plasma

  • Woo, Jong-Chang;Ha, Tae-Kyung;Li, Chen;Kim, Seung-Han;Park, Jung-Soo;Heo, Kyung-Mu;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.2
    • /
    • pp.60-63
    • /
    • 2011
  • We investigated the etching characteristics of zinc oxide (ZnO) and the effect of additive gases in a $Cl_2$-based inductively coupled plasma. The inert gases were argon, nitrogen, and helium. The maximum etch rates were 44.3, 39.9, and 37.9 nm/min for $Cl_2$(75%)/Ar(25%), $Cl_2$(50%)/$N_2$(50%), and $Cl_2$(75%)/He(25%) gas mixtures, 600 W radiofrequency power, 150 W bias power, and 2 Pa process pressure. We obtained the maximum etch rate by a combination of chemical reaction and physical bombardment. A volatile compound of Zn-Cl. achieved the chemical reaction on the surface of the ZnO thin films. The physical etching was performed by inert gas ion bombardment that broke the Zn-O bonds. The highly oriented (002) peak was determined on samples, and the (013) peak of $Zn_2SiO_4$ was observed in the ZnO thin film sample based on x-ray diffraction spectroscopy patterns. In addition, the sample of $Cl_2$/He chemistry showed a high full-width at half-maximum value. The root-mean-square roughness of ZnO thin films decreased to 1.33 nm from 5.88 nm at $Cl_2$(50%)/$N_2$(50%) plasma chemistry.

Dry Etching Characteristics of $YMnO_3$ Thin Films Using Inductively Coupled Plasma (유도결합 플라즈마를 이용한 $YMnO_3$ 박막의 건식 식각 특성 연구)

  • 민병준;김창일;창의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.2
    • /
    • pp.93-98
    • /
    • 2001
  • YMnO$_3$ films are excellent gate dielectric materials of ferroelectric random access memories (FRAMs) with MFSFET (metal -ferroelectric-semiconductor field effect transistor) structure because YMnO$_3$ films can be deposited directly on Si substrate and have a relatively low permittivity. Although the patterning of YMnO$_3$ thin films is the requisite for the fabrication of FRAMs, the etch mechanism of YMnO$_3$ thin films has not been reported. In this study, YMnO$_3$thin films were etched with Cl$_2$/Ar gas chemistries in inductively coupled plasma (ICP). The maximum etch rate of YMnO$_3$ film is 285$\AA$/min under Cl$_2$/(Cl$_2$+Ar) of 1.0, RF power of 600 W, dc-bias voltage of -200V, chamber pressure of 15 mTorr and substrate temperature of $25^{\circ}C$. The selectivities of YMnO$_3$ over CeO$_2$ and $Y_2$O$_3$ are 2.85, 1.72, respectively. The selectivities of YMnO$_3$ over PR and Pt are quite low. Chemical reaction in surface of the etched YMnO$_3$ thin films was investigated with X-ray photoelectron spectroscopy (XPS) surface of the selected YMnO$_3$ thin films was investigated with X-ray photoelectron spectroscopy(XPS) and secondary ion mass spectrometry (SIMS). The etch profile was also investigated by scaning electron microscopy(SEM)

  • PDF

A Study on the Surface of the Dry Etched TaN Thin Film by Adding The CH4 Gas in BCl3/Ar Inductively Coupled Plasma (BCl3/Ar 유도결합 플라즈마 안에 CH4 가스 첨가에 따른 건식 식각된 TaN 박막 표면의 연구)

  • Woo, Jong-Chang;Choi, Chang-Auck;Yang, Woo-Seok;Joo, Young-Hee;Kang, Pil-Seung;Chun, Yoon-Soo;Kim, Chang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.5
    • /
    • pp.335-340
    • /
    • 2013
  • In this study, the plasma etching of the TaN thin film with $CH_4/BCl_3/Ar$ gas chemistries was investigated. The etch rate of the TaN thin film and the etch selectivity of TaN to $SiO_2$ was studied as a function of the process parameters, including the amount of $CH_4$. X-ray photoelectron spectroscopy (XPS) and Field-emission scanning electron microscopy (FE-SEM) was used to investigate the chemical states of the surface of the TaN thin film.