Browse > Article
http://dx.doi.org/10.4313/TEEM.2011.12.2.60

Dry Etching Characteristics of Zinc Oxide Thin Films in Cl2-Based Plasma  

Woo, Jong-Chang (School of Electrical and Electronics Engineering, Chung-Ang University)
Ha, Tae-Kyung (School of Electrical and Electronics Engineering, Chung-Ang University)
Li, Chen (School of Electrical and Electronics Engineering, Chung-Ang University)
Kim, Seung-Han (School of Electrical and Electronics Engineering, Chung-Ang University)
Park, Jung-Soo (School of Electrical and Electronics Engineering, Chung-Ang University)
Heo, Kyung-Mu (Department of Renewable Energy, Chung-Ang University)
Kim, Chang-Il (School of Electrical and Electronics Engineering and Department of Renewable Energy, Chung-Ang University)
Publication Information
Transactions on Electrical and Electronic Materials / v.12, no.2, 2011 , pp. 60-63 More about this Journal
Abstract
We investigated the etching characteristics of zinc oxide (ZnO) and the effect of additive gases in a $Cl_2$-based inductively coupled plasma. The inert gases were argon, nitrogen, and helium. The maximum etch rates were 44.3, 39.9, and 37.9 nm/min for $Cl_2$(75%)/Ar(25%), $Cl_2$(50%)/$N_2$(50%), and $Cl_2$(75%)/He(25%) gas mixtures, 600 W radiofrequency power, 150 W bias power, and 2 Pa process pressure. We obtained the maximum etch rate by a combination of chemical reaction and physical bombardment. A volatile compound of Zn-Cl. achieved the chemical reaction on the surface of the ZnO thin films. The physical etching was performed by inert gas ion bombardment that broke the Zn-O bonds. The highly oriented (002) peak was determined on samples, and the (013) peak of $Zn_2SiO_4$ was observed in the ZnO thin film sample based on x-ray diffraction spectroscopy patterns. In addition, the sample of $Cl_2$/He chemistry showed a high full-width at half-maximum value. The root-mean-square roughness of ZnO thin films decreased to 1.33 nm from 5.88 nm at $Cl_2$(50%)/$N_2$(50%) plasma chemistry.
Keywords
Etch; Inductively coupled plasma; Zinc oxide; $Cl_2$; He; Ar; $N_2$;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 W. Lim, L. Voss, R. Khanna, B. P. Gila, D. P. Norton, S. J. Pearton, and F. Ren, Appl. Surf. Sci. 253, 889 (2006) [DOI: 10.1016/j.apsusc.2006.01.037].   DOI   ScienceOn
2 S. W. Na, M. H. Shin, Y. M. Chung, J. G. Han, S. H. Jeung, J. H. Boo, and N. E. Lee, Microelectron. Eng. 83, 328 (2006) [DOI: 10.1016/j.mee.2005.09.007].   DOI   ScienceOn
3 J. C. Woo, G. H. Kim, J. G. Kim, and C. I. Kim, Surf. Coat. Technol. 202, 5705 (2008) [DOI: 10.1016/j.surfcoat.2008.06.077].   DOI   ScienceOn
4 J. C. Woo, D. S. Um, and C. I. Kim, Thin Solid Films 518, 2905 (2010) [DOI: 10.1016/j.tsf.2009.10.144].   DOI   ScienceOn
5 J. L. van Heerden and R. Swanepoel, Thin Solid Films 299, 72 (1997) [DOI: 10.1016/s0040-6090(96)09281-4].   DOI   ScienceOn
6 G. Srinivasan and J. Kumar, Cryst. Res. Technol. 41, 893 (2006) [DOI: 10.1002/crat.200510690].   DOI   ScienceOn
7 K. K. Kim, J. H. Song, H. J. Jung, W. K. Choi, S. J. Park, and J. H. Song, J. Appl. Phys. 87, 3573 (2000) [DOI: 10.1063/1.372383].   DOI   ScienceOn
8 S. A. M. Lima, F. A. Sigoli, M. Jafelicci Jr, and M. R. Davolos, Int. J. Inorg. Mater. 3, 749 (2001) [DOI: 10.1016/s1466-6049(01)00055-1].   DOI   ScienceOn
9 M. A. Sobolewski, J. K. Olthoff, and Y. Wang, J. Appl. Phys. 85, 3966 (1999) [DOI: 10.1063/1.370298].   DOI   ScienceOn
10 D. C. Look, Mater. Sci. Eng. B 80, 383 (2001) [DOI: 10.1016/s0921-5107(00)00604-8].   DOI   ScienceOn
11 S. J. Peaton, D.P. Norton, K, Ip, Y. W. Heo, and T. Steiner, Prog. Mater. Sci. 50, 293 (2005).   DOI   ScienceOn
12 D. C. Look, D. C. Reynolds, J. R. Sizelove, R. L. Jones, C. W. Litton, G. Cantwell, and W. C. Harsch, Solid State Commun. 105, 399 (1998) [DOI: 10.1016/s0038-1098(97)10145-4].   DOI   ScienceOn