Browse > Article
http://dx.doi.org/10.4313/TEEM.2012.13.3.144

Dry Etching Properties of TiO2 Thin Film Using Inductively Coupled Plasma for Resistive Random Access Memory Application  

Joo, Young-Hee (School of Electrical and Electronics Engineering, Chung-Ang University)
Woo, Jong-Chang (School of Electrical and Electronics Engineering, Chung-Ang University)
Kim, Chang-Il (School of Electrical and Electronics Engineering, Chung-Ang University)
Publication Information
Transactions on Electrical and Electronic Materials / v.13, no.3, 2012 , pp. 144-148 More about this Journal
Abstract
In this work, we investigated to the etching characteristics of $TiO_2$ thin film and the selectivity using the inductively coupled plasma system. The etch rate and the selectivity were obtained with various gas mixing ratios. The maximum etch rate of $TiO_2$ thin film was 61.6 nm/min. The selectivity of $TiO_2$ to TiN, and $TiO_2$ to $SiO_2$ were obtained as 2.13 and 1.39, respectively. The etching process conditions are 400 W for RF power, -150 V for DC-bias voltage, 2 Pa for the process pressure, and $40^{\circ}C$ for substrate temperature. The chemical states of the etched surfaces were investigated with X-ray photoelectron spectroscopy (XPS). Its analysis showed that the etching mechanism was based on the physical and chemical pathways in the ion-assisted physical reaction.
Keywords
$TiO_2$; XPS; AES; ICP; $BCl_3$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. S. Jeong, H. Schroeder, R. Waser, Appl. Phys. Lett. 89 082909 (2006) [DOI:10.1063/1.2336621].   DOI   ScienceOn
2 B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, S. Tiedke, J. Appl. Phys. 98 033715 (2005) [DOI:10.1063/1.2001146].   DOI   ScienceOn
3 J. F. Gibbons, W. E. Beadle, Solid State Electron. 7 785 (1964) [DOI:10.1016/0038-1101(64)90131-5].   DOI   ScienceOn
4 S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D. S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J. S. Kim, J. S. Choi, B. H. Park, Appl. Phys. Lett. 85 5655 (2004) [DOI:10.1063/1.1831560].   DOI   ScienceOn
5 C. Kugeler, M. Meier, R. Rosezin, S. Gilles, R. Waser, Solid-State Electron. 53 1287 (2009) [DOI:10.1016/j.sse.2009.03.034].   DOI   ScienceOn
6 C. Nauenheim, C. Kugeler, A. Rudiger, R. Waser, A. Flocke, T.G. Noll, IEEE 464 (2008) [DOI:10.1109/NANO.2008.141].
7 S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, E. S. Lambers, D. P. Norton, S. J. Pearton, Appl. Sur. Sci. 185 27 (2001) [DOI:10.1016/S0169-4332(01)00562-1].   DOI   ScienceOn
8 J. B Park, W. S. Lim, S. D. Park, B. J. Park, G. Y. Yeom, J. Kor. Phys. Soc. 54 976 (2009) [DOI:10.3938/jkps.54.976].   DOI   ScienceOn
9 S. J. Pearton, D. P. Norton, Plasma Process. Polym. 2 16 (2005) [DOI:10.1002/ppap.200400035].   DOI   ScienceOn
10 N. M. Muthukrishnan, K. Amberialdis, A. E. Riad, J. Electrochem. Soc. 144 1780 (1997) [DOI:10.1149/1.1837679].   DOI
11 B. S Kang, Y. T. Sul, S. J. Oh, H. J. Lee, T. Alberktsson, Acta Biomater. 5 2222 (2009) [DOI:10.1016/j.actbio.2009.01.049].   DOI   ScienceOn
12 A. Leon, D. Schild, M. Fichtner, J. Alloys Compd. 404-406 766 (2005) [DOI:10.1016/j.jallcom.2004.11.129].   DOI   ScienceOn
13 D. S. Um, D. P. Kim, G. H. Kim, J. C. Woo, C. I. Kim, J. Kor. Phys. Soc. 54 1054 (2009) [DOI:10.3938/jkps.54.1054].   DOI   ScienceOn
14 D. S. Golubovic, A. H. Miranda, N. Akil, R. T. F. van Schaijk, M. J. van Duuren, Microelectron. Eng. 84 2921 (2007) [DOI:10.1016/j.mee.2007.009].   DOI   ScienceOn
15 R. Dong, D. S. Lee, M. B. Pyun, M. Hasan, H. J. Choi, M. S. Jo, D. J. Seong, M. Chang, S. H. Heo, J. M. Lee, H. K. Park, H. S. Hwang, Appl. Phys. A 93 409 (2008) [DOI:10.1007/s00339-008-4782-x].   DOI