DOI QR코드

DOI QR Code

The Dry Etching Properties on TiN Thin Film Using an N2/BCl3/Ar Inductively Coupled Plasma

  • Woo, Jong-Chang (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Joo, Young-Hee (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Park, Jung-Soo (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Kim, Chang-Il (School of Electrical and Electronics Engineering, Chung-Ang University)
  • Received : 2011.04.16
  • Accepted : 2011.06.02
  • Published : 2011.08.25

Abstract

In this work, we present a study regarding the etching characteristics on titanium nitride (TiN) thin films using an inductively coupled plasma system. The TiN thin film was etched using a $N_2/BCl_3$/Ar plasma. The studied etching parameters were the gas mixing ratio, the radio frequency (RF) power, the direct current (DC)-bias voltages, and the process pressures. The baseline conditions were as follows: RF power = 500 W, DC-bias voltage = -150 V, substrate temperature = $40^{\circ}C$, and process pressure = 15 mTorr. The maximum etch rate and the selectivity of the TiN to the $SiO_2$ thin film were 62.38 nm/min and 5.7, respectively. The X-ray photoelectron spectroscopy results showed no accumulation of etching byproducts from the etched surface of the TiN thin film. Based on the experimental results, the etched TiN thin film was obtained by the chemical etching found in the reactive ion etching mechanism.

Keywords

References

  1. A. Le Gouil, O. Joubert, G. Cunge, T. Chevolleau, L. Vallier, B. Chenevier, and I. Matko, J. Vac. Sci. Technol. B 25, 767 (2007) [DOI: 10.1116/1.2732736].
  2. B. H. Lee, Y. I. Kim, B. S. Kim, D. S. Woo, Y. J. Park, D. G. Park, S. H. Lee, and Y. H. Rho, Trans. Electr. Electron. Mater. 9, 6 (2008) [DOI: 10.4313/TEEM.2008.9.1.006].
  3. S. H. Kim and J. G. Fossum, Solid State Electron. 49, 595 (2005) [DOI: 10.1016/j.sse.2004.12.004].
  4. S. Eminente, S. Cristoloveanu, R. Clerc, A. Ohata, and G. Ghibaudo, Solid State Electron. 51, 239 (2007) [DOI: 10.1016/j.sse.2007.01.016].
  5. H. D. B. Gottlob, T. Mollenhauer, T. Wahlbrink, M. Schmidt, T. Echtermeyer, J. K. Efavi, M. C. Lemme, and H. Kurz, J. Vac. Sci. Technol. B 24, 710 (2006) [DOI: 10.1116/1.2180256].
  6. G. K. Celler and S. Cristoloveanu, J. Appl. Phys. 93, 4955 (2003) [DOI: 10.1063/1.1558223].
  7. S. A. Vitale, J. Kedzierski, and C. L. Keast, J. Vac. Sci. Technol. B 27, 2472 (2009) [DOI: 10.1116/1.3253533].
  8. S. Mukhopadhyay, K. Keunwoo, W. Xinlin, D. J. Frank, P. Oldiges, C. Ching-Te, and K. Roy, IEEE Electron Device Lett. 27, 284 (2006) [DOI: 10.1109/LED.2006.871540].
  9. H. K. Chiu, T. L. Lin, Y. Hu, K. C. Leou, H. C. Lin, M. S. Tsai, and T. Y. Huang, J. Vac. Sci. Technol. A 19, 455 (2001) [DOI: 10.1116/1.1342866].
  10. J. Tonotani, T. Iwamoto, F. Sato, K. Hattori, S. Ohmi, and H. Iwai, J. Vac. Sci. Technol. B 21, 2163 (2003) [DOI: 10.1116/1.1612517].
  11. W. S. Hwang, J. Chen, W. J. Yoo, and V. Bliznetsov, J. Vac. Sci. Technol. A 23, 964 (2005) [DOI: 10.1116/1.1927536].
  12. M. H. Shin, S. W. Na, N. E. Lee, and J. H. Ahn, Thin Solid Films 506-507, 230 (2006) [DOI: 10.1016/j.tsf.2005.08.019].
  13. E. Sungauer, E. Pargon, X. Mellhaoui, R. Ramos, G. Cunge, L. Vallier, O. Joubert, and T. Lill, J. Vac. Sci. Technol. B 25, 1640 (2007) [DOI: 10.1116/1.2781550].

Cited by

  1. Investigation of TiN thin film oxidation depending on the substrate temperature at vacuum break vol.34, pp.5, 2016, https://doi.org/10.1116/1.4960648
  2. Dry Etching Characteristics of ZnO Thin Films for the Optoelectronic Device by Using Inductively Coupled Plasma vol.13, pp.1, 2012, https://doi.org/10.4313/TEEM.2012.13.1.6
  3. Selective dry etching of TiN nanostructures over SiO2 nanotrenches using a Cl2/Ar/N2 inductively coupled plasma vol.34, pp.2, 2016, https://doi.org/10.1116/1.4936885
  4. Dry Etching Characteristics of TiN Thin Films in BCl3/He Inductively Coupled Plasma vol.25, pp.9, 2012, https://doi.org/10.4313/JKEM.2012.25.9.681