자율주행 차량은 변화하는 도로환경에 스스로 대응 가능하여야 하여, 인간 운전자 수준의 도로환경 인지성능을 확보하여야 한다. 자율주행 차량의 센서 중 영상센서는 주행방향 결정 및 차로이탈 방지 등 조향제어 수행을 위하여 차선인식 기능을 수행한다. 현재 제시된 영상센서의 차선인식 성능기준은 ADAS(Advanced Driver Assistance System)과 관련된 '운전자 보조' 관점의 성능기준으로서, 자율주행 차량의 '주체적 인지'를 위한 성능조건과 상이할 것으로 판단된다. 본 연구에서는 자율주행 시 차선인식이 비정상적으로 지속되어, 직선구간에서 곡선구간으로 진입하는 차량이 조향실패에 따라 차로를 이탈하는 상황을 가정하였다. 차량 이동궤적을 기반하여 차로이탈 상황을 모형화하고, 차로이탈 허용 수준에 따른 자율주행 차량 영상센서 성능수준을 제시하였다. 분석 결과 승용차 조건에서 차선인식 기능이 1초 이상 연속적인 오작동을 일으킨다면 차로이탈에 의한 위험한 상황에 놓일 수 있으며, 자율주행 차량을 위하여 현재 ADAS 영상센서 성능평가 방법에서의 차로이탈조건보다 심각한 차로이탈상황을 고려한 영상센서 성능평가 방안이 필요할 것으로 판단된다.
The event data recorders (EDR) have been used as a device to help understand traffic accidents. With the recent development of autonomous vehicle (AV), it has become important to prepare the new EDR for AV. Therefore, the purpose of this study is to propose the direction of EDR-AV recording. First of all, the recent EDR data elements and the data elements of AV under discussion at UNECE WP29 EDR/DSSAD (Data Storage System for Automated Driving) were analyzed. The consumer complaint database in Motor Vehicle Recall Center in Korea was analyzed in order to utilize cases of domestic traffic accidents related to advanced driver assistance systems (ADAS). Consequently, problems with existing EDR were identified through unclear accident cases related to ADAS. In the future, it was proposed to record images in which the ADAS perception systems recognize the surroundings of the accident site as an EDR-AV recording item.
Drivable area detection is a major task in advanced driver assistance systems. For drivable area detection, several studies have proposed vision-sensor-based approaches. However, conventional drivable area detection methods that use vision sensors are not suitable for environments with changes in road elevation. In addition, if the boundary between the road and vegetation is not clear, judging a vegetation area as a drivable area becomes a problem. Therefore, this study proposes an accurate method of detecting drivable areas in environments in which road elevations change and vegetation exists. Experimental results show that when compared to the conventional method, the proposed method improves the average accuracy and recall of drivable area detection on the KITTI vision benchmark suite by 3.42%p and 8.37%p, respectively. In addition, when the proposed vegetation area removal method is applied, the average accuracy and recall are further improved by 6.43%p and 9.68%p, respectively.
최근 운전자의 편의와 안전을 위해 전방 차량 추돌 감지 시스템(Front Collision Warning System : FCWS)과 같은 다양한 운전자 보조 시스템(Advanced Driver Assistance System : ADAS)이 개발되고 있다. FCWS는 주행 중 실시간으로 동작해야 하기 때문에 높은 처리속도를 필요로 한다. 또한 자동차의 전장화에 따라 FCWS를 차량용 임베디드 시스템에서 동작시키기 위해 저전력 시스템이 필요하다. 본 논문에서는 FCWS를 CPU-FPGA 구조에서 실시간 처리가 가능하도록 구현하였다. 차선 검출은 Inverse Transform Perspective(IPM)와 슬라이딩 윈도우 방식을 이용하여 CPU에서도 빠른 속도로 동작할 수 있도록 하였다. 차량검출은 높은 인식률을 가지는 Convolutional Neural Network(CNN)을 이용하였고, FPGA에서 병렬처리로 가속하였다. 제안하는 구조는 저전력으로 동작하는 ARM-Core A9과 FPGA를 내장한 Intel FPGA Cyclone V SoC(System on Chip)에서 검증하였다. HD해상도에서 FCWS는 44FPS로 실시간으로 동작하며, 고성능 PC 환경보다 처리속도 대비 에너지 효율이 약 3.33배 높은 것을 확인했다.
최근 차량을 운전하는 성별과 연령대와 차종이 다양해짐에 따라 초보 운전자나 운전 약자들은 자동차의 폭이나 길이에 대한 감각이 미숙하고 자동차의 운동 특성을 이해하기 어렵게 되었다. 이러한 문제점을 보완하기 위해 후방 센서 및 카메라 사용이 증가되고 있고, 운전자의 주차 편의성을 향상시키는 주차 보조 시스템들이 개발되고 있다. 이에 따라 차종에 따른 조향각 차이를 반영하고 거리오차를 쉽게 보정할 수 있는 주차 가이드 시스템이 필요하다. 본 연구에서는 기존의 애커먼장토식을 보완하여 후진 시 회전 반경 공식을 제안하고, 핸들 조향각 센서를 통해 도출한 핸들 조향 값을 제안하는 공식에 대입하여 보다 더 정확한 주차 가이드라인 생성 알고리즘을 개발하고자 한다.
In recent years, the technology for autonomous driving has been advancing rapidly, ADAS (Advanced Driver Assistance System) functions, which improve driver convenience and safety performance, are mostly equipped in recently released vehicles and range from level 0 to level 2 in autonomous driving technology. Among the various functions of ADAS, AEBS (Autonomous Emergency Braking System), which analyzes traffic accidents, is the most closely related to the vehicle's braking. This study developed a simulation technique for reproducing accidents related to AEBS based on real vehicle experimental data, and it was applied to the analysis of actual ADAS vehicle accidents to identify the causes of accidents.
자동차의 폭발적인 보급과 발전은 이미 우리 생활에 없어서는 안될 아주 중요한 부분으로 자리잡았다. 이와 함께 최근의 갑작스러운 IT 기술 발전은 운전환경에서 운전자에게 보다 많은 정보를 제공함으로써 운전자는 실시간으로 들어오는 외부 자극에 능동적으로 대처하여야 한다. 운전자의 능력을 넘어선 정보제공은 때때로 운전자의 주의 분산을 야기 시켜 돌이킬 수 없는 사고를 초래하기도 한다. 따라서, 운전자에게 제공할 수 있는 다양한 정보를 수집/분석/저장하여, 효율적으로 차량단말을 통해 제공할 수 있는 기술이 필요하다. 이에 따라 한국전자통신연구원은 2007년 3월부터 운전자의 상태, 차량의 내/외부 정보를 수집/분석/저장하여 효율적으로 관리해줄 VDMS (Vehicle & Driver Management System)에 대한 기술을 개방해오고 있다. VDMS는 추후 물류차량이나 택시 또는 승용차에 적용이 가능하다. 또한 향후 상용화를 위해 본 과제에서는 실제 물류차량과 택시차량에 차량정보 수집장치를 장착하여 실 데이터를 수집하였다. 본 발표에서는 VDMS의 전반적인 구성과 진행 방향에 대해서 설명하고, 과제 내에서 수행 되어온 결과물에 대해서 소개할 예정이다.
세계 각국 정부는 자동차 안전성 향상을 위한 첨단 운전자 보조시스템(ADAS, Advanced Driver Assistance System)에 대해 연구 지원 및 정책을 시행하고 있다. 이러한 노력으로 교통사고 사상자수는 지속적으로 감소하고 있다. 그러나 국내 교통사고 사상자 수는 OECD 35개국 가운데 최하위이며, 사망률은 31위를 기록하고 있다. 교통사고는 사고의 원인에 따라 차대차(V2V, Vehicle to Vehicle), 차대사람(V2P, Vehicle to Pedestrian), 차량단독과 같은 세 가지 유형으로 분류된다. 사고원인은 운전자의 인지, 판단, 조작 등의 실수로 인하여 발생한다. 이러한 이유로 사고 감소 및 예방을 위해 제안된 것이 ADAS 이다. 그리고 현재 자동차 산업계에서는 각종 안전장치를 개발하고 있으나, 성능검사를 위한 실차시험은 제한적이며 위험성을 동반하고 있다. 따라서 본 연구에서는, 제한적인 실차시험의 극복을 위해 브레이크 제동력 평가 기술에 관한 시험평가 방법의 국제표준을 검토하고, 제동력에 관한 이론식과 제어 알고리즘을 제안한 뒤 이를 실차시험으로 비교하여 타당성을 검증하였다. 이 결과는 ADAS의 기능에 따른 제동력을 확인 할 수 있으며, 개발단계에서 제안한 이론식으로 경향성 예측이 가능해져 실차시험의 위험성을 감소시킬 수 있을 것으로 판단된다.
A driver assistance system is critical to improve a convenience and stability of vehicle driving. Several systems have been already commercialized such as adaptive cruise control system and forward collision warning system. Efficient vehicle detection is very important to improve such driver assistance systems. Most existing vehicle detection systems are based on a radar system, which measures distance between a host and leading (or oncoming) vehicles under various weather conditions. However, it requires high deployment cost and complexity overload when there are many vehicles. A camera based vehicle detection technique is also good alternative method because of low cost and simple implementation. In general, night time vehicle detection is more complicated than day time vehicle detection, because it is much more difficult to distinguish the vehicle's features such as outline and color under the dim environment. This paper proposes a method to detect vehicles at night time using analysis of a captured color space with reduction of reflection and other light sources in images. Four colors spaces, namely RGB, YCbCr, normalized RGB and Ruta-RGB, are compared each other and evaluated. A suboptimal threshold value is determined by Otsu algorithm and applied to extract candidates of taillights of leading vehicles. Statistical features such as mean, variance, skewness, kurtosis, and entropy are extracted from the candidate regions and used as feature vector for SVM(Support Vector Machine) classifier. According to our simulation results, the proposed statistical feature based SVM provides relatively high performances of leading vehicle detection with various distances in variable nighttime environments.
Recent technological advances made a vehicle more intelligent to increase safety and comfort. An intelligent vehicle provides drivers with safety warning information through audible sounds, visual displays, and tactile devices. However, elderly drivers have been known to decrease the physical and cognitive abilities such as muscular strength, hearing, eyesight, short term memory, and spatial perception. Therefore, possible age-related deficits should be considered to design an effective warning system. This paper aims to evaluate the impact of advancing age on response performance on audible safety warnings which are widely used for alerting driving hazards. In order to understand the effect of age-related hearing loss and movement slowing, three sound characteristics (frequency, intensity, and period) and three age groups (younger, middle, and older) are considered. Data was drawn from 38 drivers who drove a simulated rural road in a driving simulator. Experimental results show that age influences driver's response performance. In conclusion, the appropriate range of a warning sound is suggested.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.