• 제목/요약/키워드: drain-source current

검색결과 249건 처리시간 0.033초

매몰공핍형 MOS 트랜지스터의 3차원 특성 분석 (3-D Characterizing Analysis of Buried-Channel MOSFETs)

  • Kim, M. H.
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2000년도 하계학술발표회
    • /
    • pp.162-163
    • /
    • 2000
  • We have observed the short-channel effect, narrow-channel effect and small-geometry effect in terms of a variation of the threshold voltage. For a short-channel effect the threshold voltage was largely determined by the DIBL effect which stimulates more carrier injection in the channel by reducing the potential barrier between the source and channel. The effect becomes more significant for a shorter-channel device. However, the potential, field and current density distributions in the channel along the transverse direction showed a better uniformity for shorter-channel devices under the same voltage conditions. The uniformity of the current density distribution near the drain on the potential minimum point becomes worse with increasing the drain voltage due to the enhanced DIBL effect. This means that considerations for channel-width effect should be given due to the variation of the channel distributions for short-channel devices. For CCDs which are always operated at a pinch-off state the channel uniformity thus becomes significant since they often use a device structure with a channel length of > 4 ${\mu}{\textrm}{m}$ and a very high drain (or diffusion) voltage. (omitted)

  • PDF

Analysis of Short Channel Effects Using Analytical Transport Model For Double Gate MOSFET

  • Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • 제5권1호
    • /
    • pp.45-49
    • /
    • 2007
  • The analytical transport model in subthreshold regime for double gate MOSFET has been presented to analyze the short channel effects such as subthreshold swing, threshold voltage roll-off and drain induced barrier lowering. The present approach includes the quantum tunneling of carriers through the source-drain barrier. Poisson equation is used for modeling thermionic emission current, and Wentzel-Kramers-Brillouin approximations are applied for modeling quantum tunneling current. This model has been used to investigate the subthreshold operations of double gate MOSFET having the gate length of the nanometer range with ultra thin gate oxide and channel thickness under sub-20nm. Compared with results of two dimensional numerical simulations, the results in this study show good agreements with those for subthreshold swing and threshold voltage roll-off. Note the short channel effects degrade due to quantum tunneling, especially in the gate length of below 10nm, and DGMOSFETs have to be very strictly designed in the regime of below 10nm gate length since quantum tunneling becomes the main transport mechanism in the subthreshold region.

더블 게이트 구조 적용에 따른 IGZO TFT 특성 분석 (Analysis of the Output Characteristics of IGZO TFT with Double Gate Structure)

  • 김지원;박기찬;김용상;전재홍
    • 한국전기전자재료학회논문지
    • /
    • 제33권4호
    • /
    • pp.281-285
    • /
    • 2020
  • Oxide semiconductor devices have become increasingly important because of their high mobility and good uniformity. The channel length of oxide semiconductor thin film transistors (TFTs) also shrinks as the display resolution increases. It is well known that reducing the channel length of a TFT is detrimental to the current saturation because of drain-induced barrier lowering, as well as the movement of the pinch-off point. In an organic light-emitting diode (OLED), the lack of current saturation in the driving TFT creates a major problem in the control of OLED current. To obtain improved current saturation in short channels, we fabricated indium gallium zinc oxide (IGZO) TFTs with single gate and double gate structures, and evaluated the electrical characteristics of both devices. For the double gate structure, we connected the bottom gate electrode to the source electrode, so that the electric potential of the bottom gate was fixed to that of the source. We denote the double gate structure with the bottom gate fixed at the source potential as the BGFP (bottom gate with fixed potential) structure. For the BGFP TFT, the current saturation, as determined by the output characteristics, is better than that of the conventional single gate TFT. This is because the change in the source side potential barrier by the drain field has been suppressed.

Photo Resistor Reflow 방법을 이용한 오프셋 마스크를 이용하지 않는 새로운 자기 정합 폴리 실리콘 박막 트랜지스터 (Self-aligned Offset Gated Poly-Si TFTs by Employing a Photo Resistor Reflow Process)

  • 박철민;민병혁;한민구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 C
    • /
    • pp.1085-1087
    • /
    • 1995
  • A large leakage current may be one of the critical issues for poly-silicon thin film transistors(poly-Si TFTs) for LCD applications. In order to reduce the leakage current of poly-Si TFTs, several offset gated structures have been reported. However, those devices, where the offset length in the source region is not same as that in the drain region, exhibit the asymmetric electrical performances such as the threshold voltage shift and the variation of the subthreshold slope. The different offset length is caused by the additional mask step for the conventional offset structures. Also the self-aligned implantation may not be applicable due to the mis-alignment problem. In this paper, we propose a new fabrication method for poly-Si TFTs with a self-aligned offset gated structure by employing a photo resistor reflow process. Compared with the conventional poly-Si TFTs, the device is consist of two gate electrodes, of which one is the entitled main gate where the gate bias is employed and the other is the entitled subgate which is separate from both sides of the main gate. The poly-Si channel layer below the offset oxide is protected from the injected ion impurities for the source/drain implantation and acts as an offset region of the proposed device. The key feature of our new device is the offset lesion due to the offset oxide. Our experimental results show that the offset region, due to the photo resistor reflow process, has been successfully obtained in order to fabricate the offset gated poly-Si TFTs. The advantages of the proposed device are that the offset length in the source region is the same as that in the drain region because of the self-aligned implantation and the proposed device does not require any additional mask process step.

  • PDF

0.18μm NMOS 캐스코드 전류원 구조의 2.4GHz 콜피츠 전압제어발진기 설계 및 제작 (A Design and Fabrication of a 0.18μm CMOS Colpitts Type Voltage Controlled Oscillator with a Cascode Current Source)

  • 김종범;유정호;최혁산;황인갑
    • 전기학회논문지
    • /
    • 제59권12호
    • /
    • pp.2273-2277
    • /
    • 2010
  • In this paper a 2.4GHz CMOS colpitts type microwave oscillator was designed and fabricated using H-spice and Cadence Spetre. There are 140MHz difference between the oscillation frequency and the resonance frequency of a tank circuit of the designed oscillator. The difference is seemed to be due to the parasitic component of the transistor. The inductors used in this design are the spiral inductors proposed in other papers. Cascode current source was used as a bias circuit of a oscillator and the output transistor of the current source is used as the oscillation transistor. A common drain buffer amplifier was used at the output of the oscillator. The measured oscillation frequency and output power of the oscillator are 2.173GHz and -5.53dBm.

고온 동작 MESFET 의 온도특성 해석 (High Temperature Characteristics of submicron GaAs MESFETs)

  • 원창섭;유영한;신훈범;한득영;안형근
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.379-382
    • /
    • 2002
  • GaAs has wide band gap, Therefore that malarial can used high Temperature application. in this paper explain to current-voltage characteristics of thermal effect. we experiment on thermal test of current-voltage characteristics and gate leakage current with real device. As a result, we propose a current-volatage characteristics model. that model base on gate leakage current, and gate leakage current influence gate source voltage.

  • PDF

Preparation of Epoxy/Organoclay Nanocomposites for Electrical Insulating Material Using an Ultrasonicator

  • Park, Jae-Jun;Park, Young-Bum;Lee, Jae-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권3호
    • /
    • pp.93-97
    • /
    • 2011
  • In this paper, we discuss design considerations for an n-channel metal-oxide-semiconductor field-effect transistor (MOSFET) with a lateral asymmetric channel (LAC) doping profile. We employed a 0.35 ${\mu}M$ standard complementary MOSFET process for fabrication of the devices. The gates to the LAC doping overlap lengths were 0.5, 1.0, and 1.5 ${\mu}M$. The drain current ($I_{ON}$), transconductance ($g_m$), substrate current ($I_{SUB}$), drain to source leakage current ($I_{OFF}$), and channel-hot-electron (CHE) reliability characteristics were taken into account for optimum device design. The LAC devices with shorter overlap lengths demonstrated improved $I_{ON}$ and $g_m$ characteristics. On the other hand, the LAC devices with longer overlap lengths demonstrated improved CHE degradation and $I_{OFF}$ characteristics.

Device Optimization of N-Channel MOSFETs with Lateral Asymmetric Channel Doping Profiles

  • Baek, Ki-Ju;Kim, Jun-Kyu;Kim, Yeong-Seuk;Na, Kee-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권1호
    • /
    • pp.15-19
    • /
    • 2010
  • In this paper, we discuss design considerations for an n-channel metal-oxide-semiconductor field-effect transistor (MOSFET) with a lateral asymmetric channel (LAC) doping profile. We employed a $0.35\;{\mu}m$ standard complementary MOSFET process for fabrication of the devices. The gates to the LAC doping overlap lengths were 0.5, 1.0, and $1.5\;{\mu}m$. The drain current ($I_{ON}$), transconductance ($g_m$), substrate current ($i_{SUB}$), drain to source leakage current ($i_{OFF}$), and channel-hot-electron (CHE) reliability characteristics were taken into account for optimum device design. The LAC devices with shorter overlap lengths demonstrated improved $I_{ON}$ and $g_m$ characteristics. On the other hand, the LAC devices with longer overlap lengths demonstrated improved CHE degradation and $I_{OFF}$ characteristics.

고집적 메모리의 고장 및 결함 위치검출 가능한 BIST/BICS 회로의 설계 (A design of BIST/BICS circuits for detection of fault and defect and their locations in VLSI memories)

  • 김대익;배성환;전병실
    • 한국통신학회논문지
    • /
    • 제22권10호
    • /
    • pp.2123-2135
    • /
    • 1997
  • 고집적 SRAM을 구성하고 있는 일반적인 메모리 셀을 이용하여 저항성 단락을 MOSFET의 게이트-소오스, 게이트-드레인, 소오스-드레인에 적용시키고, 각 단자에서 발생 가능한 개방 결함을 고려하여 그 영향에 따른 메모리의 자장노드의 전압과 VDD에서의 정전류를 PSPICE 프로그램으로 분석하였다. 해석 결과를 고려하여 메모리의 기능성과 신뢰성을 향상시키기 위해 기능 테스트와 IDDQ 테스트에 동시에 적용할 수 있는 O(N)의 복잡도를 갖는 테스트 알고리즘을 제안하였다. 테스트의 질과 효율을 좀 더 향상시키기 위해 메모리에서 발생되는 고장을 검출하는 BIST 회로와 정전류의 비정상적인 전류의 흐름을 발생시키는 결함을 검출하는 BICS를 설계하였다. 또한 구현한 BIST/BICS 회로는 고장 메모리의 수리를 위해 고장 및 결함의 위치를 검출할 수 있다.

  • PDF

MFSFET 소자를 이용한 Adaptive Learning Curcuit 의 설계 (Design of the Adaptive Learning Circuit by Enploying the MFSFET)

  • 이국표;강성준;장동훈;윤영섭
    • 대한전자공학회논문지SD
    • /
    • 제38권8호
    • /
    • pp.1-12
    • /
    • 2001
  • 본 연구에서는 MFSFET (Metal-Ferroelectric-Semiconductor FET) 소자의 모델링을 바탕으로 adaptive learning 회로를 설계하고, 그 수치적인 결과를 분석하였다. Adaptive learning 회로에서 출력주파수는 MFSFET 소자의 소스-드레인 저항과 캐패시턴스에 반비례하는 특성을 보여주었다. Short pulse 수에 따른 포화드레인 전류곡선은 강유전체의 분극반전 특성과 유사함을 확인할 수 있었고, 이는 강유전체 분극이 MFSFET 소자의 드레인 전류조절에 핵심적인 요소로 작용한다는 사실을 의미한다. 다음으로 MFSFET 소자의 드레인 전류조절에 핵심적인 요소로 작용한다는 사실을 의미한다. 다음으로 MFSFET 소자의 소스-드레인 저항으로부터 dimensionality factor 와 adaptive learning 회로의 펄스 수에 따른 출력주파수 변화를 분석하였다. 이 특성으로부터, adaptive learning 회로의 주파수변조 특성 즉, 입력펄스의 진행에 따라 출력펄스의 점진적인 주파수 변화를 의미하는 adaptive learning 특성을 명화하게 확인할 수 있었고, 뉴럴 네트워크에서 본 회로가 뉴런의 시넵스 부분에 효과적으로 사용될 수 있음을 입증하였다.

  • PDF