We characterize the boundedness and compactness of differences of weighted composition operators acting from weighted Bergman spaces Apω to Lebesgue spaces Lq(dµ) for all 0 < p, q < ∞, where ω is a radial weight on the unit disk admitting a two-sided doubling condition.
We prove that if a given complete Riemannian manifold is roughly isometric to a complete Riemannian manifold satisfying the volume doubling condition, the Poincar inequality and the finite covering condition at infinity on each end, then every positive harmonic function on the manifold is asymptotically constant at infinity on each end. This result is a direct generalization of those of Yau and of Li and Tam.
For every doubling gauge g, we prove that there is a Cantor set of positive finite $H^g$-measure, $P^g$-measure, and $P^g_0$-premeasure. Also, we show that every compact metric space of infinite $P^g_0$-premeasure has a compact countable subset of infinite $P^g_0$-premeasure. In addition, we obtain a class of uniform Cantor sets and prove that, for every set E in this class, there exists a countable set F, with $\bar{F}=E{\cup}F$, and a doubling gauge g such that $E{\cup}F$ has different positive finite $P^g$-measure and $P^g_0$-premeasure.
We construct new metric outer measures (multifractal analogues of the Hewitt-Stromberg measure) $H^{q,t}_{\mu}$ and $P^{q,t}_{\mu}$ lying between the multifractal Hausdorff measure ${\mathcal{H}}^{q,t}_{\mu}$ and the multifractal packing measure ${\mathcal{P}}^{q,t}_{\mu}$. We set up a necessary and sufficient condition for which multifractal Hausdorff and packing measures are equivalent to the new ones. Also, we focus our study on some regularities for these given measures. In particular, we try to formulate a new version of Olsen's density theorem when ${\mu}$ satisfies the doubling condition. As an application, we extend the density theorem given in [3].
In this paper, we prove that if a metric measure space satisfies the volume doubling condition and the Hardy type inequality with the same exponent n ($n{\geq}3$), then it has exactly the n-dimensional volume growth. Besides, three interesting applications of this fact have also been given. The first one is that we prove that complete noncompact smooth metric measure space with non-negative weighted Ricci curvature on which the Hardy type inequality holds with the best constant are isometric to the Euclidean space with the same dimension. The second one is that we show that if a complete n-dimensional Finsler manifold of nonnegative n-Ricci curvature satisfies the Hardy type inequality with the best constant, then its flag curvature is identically zero. The last one is an interesting rigidity result, that is, we prove that if a complete n-dimensional Berwald space of non-negative n-Ricci curvature satisfies the Hardy type inequality with the best constant, then it is isometric to the Minkowski space of dimension n.
충북 청주시의 공단폐수 유입지로부티 탈질화에 의한 페놀분해 세균이 분리되었다. 분리된 균의 형태적, 생화학적 및 생리학적 특성을 분석한 결과 Pseudomonas sp.로 판명되었고 HL100으로 명명하였다. 분리된 균은 nitrate가 최종전자 수용체로서 공급되는 경우 페놀을 단일 탄소 및 에너지원으로 이용하였다. 배지에 첨가된 nitrate가 nitrite로 환원되면서 3mM의 페놀을 약 110시간만에 완전히 분해하였으며 관찰된 최대 doubling time은 20시간이었다. 적절한 조건에서 nitrate로부터 $N_2$를 생성하는 능력을 보여 분리된 균의 경우 탈질작용의 전과정을 수행할 수 있는 것으로 확인되었다. 최적 생장온도와 pH는 각각 37$^{\circ}C$와 7.0으로 판명되었으며 탈질화에 의한 생장시 toluene을 탄소원으로 이용하였지만 Xylene과 benzene은 이용하지 못하였다.
There are fruitful results on degenerate parabolic-hyperbolic equations recently following the idea of $Kru{\check{z}}kov^{\prime}s$ doubling variables device. This paper is devoted to the well-posedness of nonhomogeneous boundary problem for degenerate parabolic-hyperbolic equations with spatially dependent second order operator, which has not caused much attention. The novelty is that we use the boundary flux triple instead of boundary layer to treat this problem.
A Jordan domain D in C is said to be a c-quasidisk if there exists a constant $c \geq 1$ such that each two points $z_1$ and $z_2$ in D can be joined by an arc $\tau$ in D such that $$ \ell(\tau) \leq c$\mid$z_1 - z_2$\mid$ $$ and $$ (1.1) min(\ell(\tau_1),\ell(\tau_2)) \leq c d(z, \partial D) $$ for all $z \in \tau$, where $\tau_1$ and $\tau_2$ are the components of $\tau\{z}$. Quasidisks have been extensively studied and can be characterized in many different ways [1],[2],[3].
목적 : 방사선조사후 세포의 생존 분획은 세포집락 측정기법으로 확인하는 것이 표준이나 많은 비용과 시간이 소요되는 단점을 갖고 있다. 이에 생존 세포의 tetrazolium염의 자색 formazan 침전물로의 환원시키는 능력에 그 기반을 둔 MTT 기법을 사용하여 세포집락 측정기법을 대체하기 위한 기법으로서의 유용성과 그 실행상의 최적조건을 규명하고자 하였다. 방법 : PCI-1, SNU-1066, NCI-H630, RKO등의 세포주에 0, 2, 4, 6, 8, 10 Gy의 방사선을 조사한 후 세포집락 측정 기법과 MTT기법으로 세포 생존 분획을 조사하였다. 세포집락 측정기법은 $25\;cm^2$ 폴리스티렌 배양 플라스크에 방사선량에 따라 다른 수의 세포를 분주한 후 24시간 동안 배양 후 방사선을 조사하였고 이를 $10\~14$일 동안 배양 후 염색하여 생성된 세포집락의 수를 측정하였다. MTT기법은 침전물의 용해과정이 필요없는 Premix WST-1 시약을 이용하여 시행하였다. MTT기법은 각각의 세포주에서 세포수와 흡광도간의 선형관계와 최적 실험조건을 확인한 이후 시행하였다. 이 기법은 방사선을 조사받은 세포에서는 지수적 성장을 회복한 이후와 방사선을 조사받지 않은 세포는 4회 이상의 세포분열을 거친 후에 시행하였다. 세포집락 측정기법 및 MTT기법을 통하여 얻은 세포 생존율을 구한 후 이를 지표로 비교하였다. 결과 : 각 기법으로 얻은 세포 생존율의 표준편차는 $5\%$ 내외였다. 2가지 방법으로 구한 세포 생존율은 t-test로 비교하였을 때 $0\~4\;Gy$에서는 통계적으로 유의한 차이가 없었으며 회귀분석 결과는 선형적 관계가 있었다$(R^2=0.975-0.992)$. MTT 기법의 시행에 최적인 세포수는 배양효율에 따라 다른 것으로 나타났는데, 배양효율이 $30\%$ 이상이면 300개 이하가, $30\%$ 미만인 경우는 $500\~1,000$개가 적당한 것으로 확인되었다. MTT기법은 6 배가시간 경과 이후에 시행하는 것이 세포집락 측정기법과 가장 근접하였으며 적어도 4 배가시간 이후에 시행하는 것이 필요할 것으로 사료되었다. 이에 따르면 배가시간이 3일 이하인 세포주가 세포 민감성 측정방법으로서 MTT 기법이 세포 집락 측정 기법을 대체하여 사용하기에 적합한 것으로 사료되었다. 결론 : 이상에서, MTT기법을 이용하여 방사선조사 후의 세포생존을 측정하기 위해서는 예비실험을 통해 각 세포주에서의 최적의 조건을 찾는 것이 필수적이며 이 조건하에서 MTT기법을 시행해야만 방사선에 의한 세포 민감성 측정에 이용될 수 있음을 확인하였다.
ANAMMOX (Anaerobic ammonium oxidation) reactor, which was cultivated ANAMMOX bacteria in mesophilic condition ($35^{\circ}C$), was operated to investigate the effects of temperature. In $20{\sim}30^{\circ}C$ of operation condition, which was assumed as field-temperature, total N removal and $NH_4-N$ removal rate were declined from about 2.50 and $1.27kg\;N/{m^3}_{reactor}-day$ (0.06 and 0.03 kg N/kgVSS/day) to 1.62 and $0.41kg\;N/{m^3}_{reactor}-day$ (0.04 and 0.01 kg N/kgVSS/day), In this range of temperature, ANAMMOX had very low activities but acid fermentation bacteria and denitrifiers, which were competitors of substrates, had high activities relatively. Though operation temperature was higher than inhibition condition for two months, ANAMMOX activities could not been recovered once they were inhibited by low temperature. This fact was resulted from very slow doubling time of ANAMMOX bacteria. This study shows that maintenance device of optimal temperature is necessary required in field application of ANAMMOX.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.