HARMONIC DOUBLING CONDITION AND JOHN DISKS

KIWON KIM

1. Introduction

A Jordan domain D in \mathbb{C} is said to be a c-quasidisk if there exists a constant $c \geq 1$ such that each two points z_1 and z_2 in D can be joined by an arc γ in D such that

$$\ell(\gamma) \le c|z_1 - z_2|$$

and

(1.1)
$$\min(\ell(\gamma_1), \ell(\gamma_2)) \le c \, d(z, \partial D)$$

for all $z \in \gamma$, where γ_1 and γ_2 are the components of $\gamma \setminus \{z\}$. Quasidisks have been extensively studied and can be characterized in many different ways [1], [2], [3].

A bounded domain D in \mathbb{C} is said to be a c-John domain if there exist a point $z_0 \in D$ and a constant $c \geq 1$ such that each point $z_1 \in D$ can be joined to z_0 by an arc γ in D satisfying

$$\ell(\gamma(z_1,z)) \le c d(z,\partial D)$$

for each $z \in \gamma$. We call z_0 a John center, c a John constant and γ a c-John arc.

There are several equivalent definitions for John domains. For example, a domain D in \mathbb{C} is a c-John domain if and only if each two points $z_1, z_2 \in D$ can be joined by an arc γ which satisfies (1.1), [9]. This

Received September 12, 1993. Revised December 5, 1994.

AMS Classification: 30C65.

Key word: harmonic measure, John disk, quasidisk.

definition can be used to define the unbounded John domains D in \mathbb{C} as well [9, 2.26].

John domains were introduced by F. John [5] in connection with his work in elasticity; the term John domain is due to Martio and Sarvas [7]. John domains arise also naturally in distortion problems of conformal and quasiconformal mappings. From the definition we can see that a domain is a John domain if it is possible to move from one point to another without passing too close to the boundary.

We say that a domain D in \mathbb{C} is a c-John disk if it is a simply connected c-John domain. Thus the class of quasidisks is properly contained in the class of John disks. The converse is not true since a John disk need not even be a Jordan domain. For example, the unit disk minus the segment [0,1] is a John disk.

There are various characterizations of John disks, for example, see [4], [7], [9], [10]. The main purpose of this paper is to give a conformally invariant characterization of John disks in terms of harmonic measure.

A bounded Jordan domain D in \mathbb{C} is said to satisfy a harmonic doubling condition if there exist a point $z_0 \in D$ and a constant $c_0 > 0$ such that

(1.2)
$$\omega(z_0, \alpha; D) \le c_0 \omega(z_0, \beta; D)$$

for each pair of consecutive arcs α, β on ∂D with

$$dia(\alpha) \leq 2dia(\beta),$$

where ω is the harmonic measure in D.

REMARK 1.3. If D satisfies (1.2) for some $z_0 \in D$, then it satisfies (1.2) for every $z_1 \in D$ with $c_1 = c_1(c_0, z_0, z_1)$.

Proof of Remark 1.3. Fix $z_1 \in D$ and fix consecutive arcs $\alpha, \beta \subset \partial D$ with

$$\mathrm{dia}(\alpha) \leq 2\mathrm{dia}(\beta).$$

Since ω is nonnegative and harmonic, by Harnack's Theorem [8, p. 115]

$$\frac{\omega(z_1, \alpha; D)}{\omega(z_0, \alpha; D)} \le k$$
 and $\frac{\omega(z_0, \beta; D)}{\omega(z_1, \beta; D)} \le k$

where k is a constant depending only on $z_0, z_1, 0 < k > 1$. Thus by hypothesis we have

$$\frac{\omega(z_1,\alpha;D)}{\omega(z_1,\beta;D)} \le \frac{\omega(z_0,\alpha;D)}{\omega(z_0,\beta;D)} k^2 \le c_0 k^2 = c_1$$

and hence (1.2) holds for every $z_1 \in D$ with $c_1 = c_1(c_0, z_0, z_1)$. \square

In [6], Jerison and Kenig showed that a bounded Jordan domain D in \mathbb{C} is a quasidisk if and only if D and $D^* = \overline{\mathbb{C}} \setminus \overline{D}$ satisfy a harmonic doubling condition. Since a John disk may be viewed as a one-sided quasidisk, it is natural to ask whether a bounded Jordan domain D in \mathbb{C} satisfies a harmonic doubling condition if and only if D is a John disk. The answer is yes.

MAIN THEOREM. A bounded Jordan domain D in \mathbb{C} is a c-John disk if and only if it satisfies a harmonic doubling condition.

2. Proof of main theorem

Let f map the unit disk \mathbb{B} conformally onto the bounded Jordan domain D in \mathbb{C} . Then by the Caratheodory extension theorem $f: \mathbb{B} \to D$ admits an extension to a homeomorphism $f: \overline{\mathbb{B}} \to \overline{D}$. The following Lemma 2.1 describes John disks in terms of the conformal mapping $f: \mathbb{B} \to D$.

LEMMA 2.1. Suppose that D is a bounded Jordan domain in \mathbb{C} , that $w_0 \in D$ and that f is as above with $w_0 = f(0)$. Then the following conditions are equivalent, where the constants c and $\delta > 0$ need not be the same in every condition:

(1) D is a c-John disk.

(2)

$$\frac{\operatorname{dia} f(\beta_1)}{\operatorname{dia} f(\beta)} \le c \left(\frac{\ell(\beta_1)}{\ell(\beta)}\right)^{\delta}$$

for all arcs $\beta_1 \subset \beta \subset \partial \mathbb{B}$.

(3) $\frac{\operatorname{dia}(\alpha_1)}{\operatorname{dia}(\alpha)} \le c \left(\frac{\omega(w_0, \alpha_1; D)}{\omega(w_0, \alpha; D)}\right)^{\delta}$

for all arcs $\alpha_1 \subset \alpha \subset \partial D$.

If $dia(D) \leq q d(w_0, \partial D)$, then the various constants c and δ depend only on q and on each other.

Proof. The equivalence of (1) and (2) is proved in [10]. Next the condition (3) is a reinterpretation of the condition (2): for suppose that (2) holds, fix arcs $\alpha_1 \subset \alpha \subset \partial D$ and let $\beta_1 = f^{-1}(\alpha_1)$, $\beta = f^{-1}(\alpha)$. Since harmonic measure ω of α at 0 with respect to \mathbb{B} is

$$\omega(0, lpha; \mathbb{B}) = rac{ heta}{2\pi} = rac{\ell(lpha)}{2\pi}$$

for α an arc of the circle with central angle θ , by conformal invariance of harmonic measure we have

$$\frac{\operatorname{dia}(\alpha_{1})}{\operatorname{dia}(\alpha)} = \frac{\operatorname{dia}f(\beta_{1})}{\operatorname{dia}f(\beta)} \leq c \left(\frac{\ell(\beta_{1})}{\ell(\beta)}\right)^{\delta} = c \left(\frac{\omega(0,\beta_{1};\mathbb{B})}{\omega(0,\beta;\mathbb{B})}\right)^{\delta} \\
= c \left(\frac{\omega(w_{0},\alpha_{1};D)}{\omega(w_{0},\alpha;D)}\right)^{\delta}.$$

By the same reasoning as above, (3) also implies (2). \square

LEMMA 2.2. Suppose that D is a bounded Jordan domain in \mathbb{C} and that $z_0 \in D$. Then the following conditions are equivalent:

(1) There exist constants c and $\delta > 0$ such that

$$\frac{\operatorname{dia}(\alpha_1)}{\operatorname{dia}(\alpha)} \le c \left(\frac{\omega(z_0, \alpha_1; D)}{\omega(z_0, \alpha; D)}\right)^{\delta}$$

for all arcs $\alpha_1 \subset \alpha \subset \partial D$.

(2) There exists a constant c > 1 such that

(2.3)
$$\omega(z_0, \alpha; D) \le c\omega(z_0, \alpha_1; D)$$

for all arcs $\alpha_1 \subset \alpha \subset \partial D$ with

$$dia(\alpha) \leq 2dia(\alpha_1).$$

Proof. First we assume that (1) holds and let $\alpha_1 \subset \alpha$ be arcs on ∂D with

$$dia(\alpha) \leq 2dia(\alpha_1)$$
.

Then by (1)

$$\frac{\omega(z_0,\alpha_1;D)}{\omega(z_0,\alpha;D)} \geq c^{-\frac{1}{\delta}} \Big(\frac{\operatorname{dia}(\alpha_1)}{\operatorname{dia}(\alpha)}\Big)^{\frac{1}{\delta}} \geq (2c)^{-\frac{1}{\delta}},$$

and hence we have

$$\omega(z_0, \alpha; D) \leq c' \omega(z_0, \alpha_1; D),$$

where $c' = (2c)^{\frac{1}{\delta}}$.

Next suppose that (2) holds. We show first that

(2.4)
$$\omega(z_0, \alpha; D) \le c^n \omega(z_0, \alpha_1; D)$$

for all arcs $\alpha_1 \subset \alpha \subset \partial D$ with

$$\operatorname{dia}(\alpha) \leq 2^n \operatorname{dia}(\alpha_1)$$
.

By (2.3), inequality (2.4) is true for n=1. Now we assume that it is true for $n=k\geq 1$ and suppose that we have arcs $\alpha_1\subset\alpha\subset\partial D$ such that

$$\operatorname{dia}(\alpha) \leq 2^{k+1} \operatorname{dia}(\alpha_1).$$

Then since (2.4) is true for n = k, we may assume that

$$2^k \operatorname{dia}(\alpha_1) \le \operatorname{dia}(\alpha) \le 2^{k+1} \operatorname{dia}(\alpha_1),$$

since otherwise we would have

$$\operatorname{dia}(\alpha) < 2^k \operatorname{dia}(\alpha_1)$$

whence

$$\omega(z_0, \alpha; D) \le c^k \omega(z_0, \alpha_1; D) < c^{k+1} \omega(z_0, \alpha_1; D).$$

If γ is an arc with $\alpha_1 \subset \gamma \subset \alpha \subset \partial D$, then $\operatorname{dia}(\gamma)$ increases continuously as the end points of γ tend to the end points of α . Hence there exists an arc γ_1 such that

$$\alpha_1 \subset \gamma_1 \subset \alpha \subset \partial D$$

and

$$dia(\alpha) = 2dia(\gamma_1).$$

Then

$$\mathrm{dia}(\gamma_1) \le 2^k \mathrm{dia}(\alpha_1)$$

and by (2.4) with n = k and n = 1,

$$\frac{\omega(z_0,\alpha;D)}{\omega(z_0,\alpha_1;D)} = \frac{\omega(z_0,\alpha;D)}{\omega(z_0,\gamma_1;D)} \frac{\omega(z_0,\gamma_1;D)}{\omega(z_0,\alpha_1;D)} \le cc^{k+1} = c^{k+1}.$$

Thus

$$\omega(z_0, \alpha; D) \le c^{k+1} \omega(z_0, \alpha_1; D)$$

and this establishes (2.4).

Next given any arcs $\alpha_1 \subset \alpha \subset \partial D$, there exists an integer n > 0 such that

$$(2.5) 2^{n-1} \operatorname{dia}(\alpha_1) \le \operatorname{dia}(\alpha) \le 2^n \operatorname{dia}(\alpha_1).$$

Then by (2.4) we have

(2.6)
$$\omega(z_0, \alpha; D) \le c^n \omega(z_0, \alpha_1; D).$$

Let $\delta = \frac{log2}{logc}$. Then by (2.5) and (2.6) we obtain

$$\frac{\omega(z_0, \alpha; D)}{\omega(z_0, \alpha_1; D)} \le c^n = c(2^{\frac{1}{\delta}})^{n-1} = c(2^{n-1})^{\frac{1}{\delta}}$$
$$\le c\left(\frac{\operatorname{dia}(\alpha)}{\operatorname{dia}(\alpha_1)}\right)^{\frac{1}{\delta}}.$$

Hence we get

$$\frac{\operatorname{dia}(\alpha_1)}{\operatorname{dia}(\alpha)} \le c' \left(\frac{\omega(z_0, \alpha_1; D)}{\omega(z_0, \alpha; D)} \right)^{\delta},$$

where $c' = c^{\delta}$. Hence (2) implies (1). \square

Proof of Main Theorem. Suppose first that a bounded Jordan domain D in \mathbb{C} is a c-John disk with a John center z_0 . We want to show that there exists a constant $c_0 > 0$ such that

$$\omega(z_0, \alpha; D) \le c_0 \omega(z_0, \beta; D)$$

for each pair of consecutive arcs α, β on ∂D with

$$dia(\alpha) \leq 2dia(\beta)$$
.

Suppose not. Then for j=1,2,... there are consecutive arcs α_j,β_j on ∂D such that

(2.7)
$$\operatorname{dia}(\alpha_j) \leq 2\operatorname{dia}(\beta_j)$$
 and $\omega(z_0, \alpha_j; D) \geq 3^j \omega(z_0, \beta_j; D)$.

Thus

$$\operatorname{dia}(\alpha_j \cup \beta_j) \leq 3 \operatorname{dia}(\beta_j)$$

and hence by (3) of Lemma 2.1 with $w_0 = z_0$ and (2.7)

$$\frac{1}{3} \le \frac{\operatorname{dia}(\beta_j)}{\operatorname{dia}(\alpha_j \cup \beta_j)} \le c \left(\frac{\omega(z_0, \beta_j; D)}{\omega(z_0, \alpha_j \cup \beta_j; D)}\right)^{\delta} \\
\le c \left(\frac{\omega(z_0, \beta_j; D)}{\omega(z_0, \alpha_j; D)}\right)^{\delta} \le c(3^{-j})^{\delta}$$

which yields a contradiction as $j \to \infty$.

Suppose next that a bounded Jordan domain D in \mathbb{C} satisfies a harmonic doubling condition (1.2). To show that D is a c-John disk, it suffices to show that D satisfies (2.3) by Lemma 2.1 with $w_0 = z_0$ and Lemma 2.2.

Let $\alpha_1 \subset \alpha$ be arcs of ∂D with

$$dia(\alpha) \leq 2dia(\alpha_1)$$

and let $c_1 = 2(c_0 + 1)$.

Suppose first that α_1, α have a common end point. Then

$$dia(\alpha \setminus \alpha_1) \leq 2dia(\alpha_1)$$

and hence by (1.2) we have

$$\omega(z_0, \alpha \setminus \alpha_1; D) \leq c_0 \omega(z_0, \alpha_1; D)$$

for some $z_0 \in D$. Thus

$$\omega(z_0,\alpha;D) \leq (c_0+1)\omega(z_0,\alpha_1;D)$$

Next suppose that $\alpha \setminus \alpha_1$ consists of two disjoint subarcs $\alpha_2, \alpha_3 \subset \alpha$. Then

$$dia(\alpha_1 \cup \alpha_2) \leq 2dia(\alpha_1)$$

and hence

$$\omega(z_0,\alpha_1\cup\alpha_2;D)\leq (c_0+1)\omega(z_0,\alpha_1;D)$$

by what was proved above. The same argument also gives

$$\omega(z_0, \alpha_1 \cup \alpha_3; D) \le (c_0 + 1)\omega(z_0, \alpha_1; D)$$

and hence

$$\omega(z_0,\alpha;D) \leq 2(c_0+1)\omega(z_0,\alpha_1;D).$$

This completes the proof of Main Theorem.

References

- L. V. Ahlfors, Quasiconformal reflections, Acta Math. 109 (1963), 291-301.
- F. W. Gehring, Uniform domains and the Ubiquitous Quasidisk, Jber. Deutsche. Dt. Math.-Verein 89 (1987), 88-103.
- 3. F. W. Gehring, Characteristic Properties of Quasidisks, Les Presses De L'Université de Montréal, 1982.
- F. W. Gehring, K. Hag and O. Martio, The quasihyperbolic metric in John domains, Math. Scand. 65 (1989), 75-92.
- 5. F. John, Rotation and Strain, Comm. Pure Appl. Math. 14 (1961), 391-413.
- 6. D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in non-tangentially accessible domain, Adv. in Math. 46 (1982), 80-147.

- 7. O. Martio and J. Sarvas, Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. 4 (1978/1979), 383-401.
- 8. R. Nevanlinna, Analytic Functions, Springer-Verlag, New York, 1970.
- 9. R. Näkki and J. Väisälä, John disks, Expo. Math., (to appear).
- 10. C. Pommerenke, One-sided smoothness conditions and conformal mappings, J. London Math. Soc. 26 (1982), 77-82.

Department of Mathematics Pusan Women's University Pusan, 616-060, Korea