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HARMONIC DOUBLING
CONDITION AND JOHN DISKS

Kiwon KM

1. Introduction

A Jordan domain D in C is said to be a c-quasidisk if there exists a
constant ¢ > 1 such that each two points z; and 22 in D can be joined
by an arc 4 in D such that

€(7y) < clz1 — z|
and
(1.1) min(¢(y1),4(v2)) < ¢d(z,8D)

for all z € v, where v, and v, are the components of v\ {z}. Quasidisks
have been extensively studied and can be characterized in many different
ways (1], 2], [3].

A bounded domain D in C is said to be a c¢-John domain if there
exist a point z9g € D and a constant ¢ > 1 such that each point z; € D
can be joined to z¢ by an arc v in D satisfying

€(y(z1,%2)) < cd(z,0D)

for each z € 4. We call z9 a John center, ¢ a John constant and v a
c-John arc.

There are several equivalent definitions for John domains. For exam-
ple, a domain D in C is a ¢-John domain if and only if each two points
z1,22 € D can be joined by an arc v which satisfies (1.1), [9]. This
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definition can be used to define the unbounded John domains D in C as
well [9, 2.26].

John domains were introduced by F. John [5] in connection with his
work in elasticity; the term John domain is due to Martio and Sarvas [7].
John domains arise also naturally in distortion problems of conformal
and quasiconformal mappings. From the definition we can see that a
domain is a John domain if it is possible to move from one point to
another without passing too close to the boundary.

We say that a domain D in Cis a c¢-John disk if it is a simply con-
nected c-John domain. Thus the class of quasidisks is properly contained
in the class of John disks. The converse is not true since a John disk
need not even be a Jordan domain. For example, the unit disk minus
the segment [0,1] is a John disk.

There are various characterizations of John disks, for example, see [4],
[7], [9], [10]. The main purpose of this paper is to give a conformally
invariant characterization of John disks in terms of harmonic measure.

A bounded Jordan domain D in C is said to satisfy a harmonic dou-
bling condition if there exist a point zg € D and a constant ¢o > 0 such
that

(1.2) w(zo,a; D) < cow(zg, B3; D)
for each pair of consecutive arcs «, 8 on 8D with
dia(a) < 2dia(3),

where w is the harmonic measure in D.

REMARK 1.3. If D satisfies (1.2) for some zy € D, then it satisfies
(1.2) for every z; € D with ¢; = ¢1(co, 20,21).

Proof of Remark 1.3. Fix z; € D and fix consecutive arcs a, 3 C 0D
with
dia(a) < 2dia(g).

Since w is nonnegative and harmonic, by Harnack’s Theorem (8, p. 115]

w(zl,a;D) w(ZO,,B;D)
AR i —_— <
UJ(Z(),Ct;D) _k and w(ZI’IB;D) _k
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where k is a constant depending only on 20,21, 0 < k¥ > 1. Thus by
hypothesis we have

w(zl?a;D) < w(207a;D)k2 <
w(zlvﬂ;D) w(Zg,ﬂ;D)
and hence (1.2) holds for every z; € D with ¢; == ¢1(co, 20,21). O

cok? = ¢;

In [6], Jerison and Kenig showed that a bounded Jordan domain D
in C is a quasidisk if and only if D and D* = C \ D satisfy a harmonic
doubling condition. Since a John disk may be viewed as a one-sided
quasidisk, it is natural to ask whether a bounded Jordan domain D in C
satisfies a harmonic doubling condition if and only if D is a John disk.
The answer is yes.

MAIN THEOREM. A bounded Jordan domain D in C is a c-John disk
if and only if it satisfies a harmonic doubling condition.

2. Proof of main theorem

Let f map the unit disk B conformally onto the bounded Jordan
domain D in C. Then by the Caratheodory extension theorem f : B — D
admits an extension to a homeomorphism f : B — D. The following

Lemma 2.1 describes John disks in terms of the conformal mapping f :
B— D.

LEMMA 2.1. Suppose that D is a bounded Jordan domain in C, that
wo € D and that f is as above with wo = f(0). Then the following
conditions are equivalent, where the constants ¢ and § > 0 need not be
the same in every condition:

(1) D is a c-John disk.
(2)

diaf(B1) _ (€AY’
i) < (a3
for all arcs f; C § C JB.
(3)

dia(ay) w(wo, ar; D)\?
<

dia(a) = c( w(wo, a; D) )
for all arcs oy C a C OD.
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If dia(D) < gd(wg,3D), then the various constants ¢ and § depend only
on g and on each other.

Proof. The equivalence of (1) and (2) is proved in [10]. Next the
condition (3) is a reinterpretation of the condition (2): for suppose that
(2) holds, fix arcs a1 C @ C 8D and let B = f~Ya1), 8 = f Y (a).
Since harmonic measure w of a at 0 with respect to B is

8 fla)

0,0;B) = — = —

for & an arc of the circle with central angle 8, by conformal invariance
of harmonic measure we have

dia(a1) _ diaf(81) _ C(e(ﬂl)>" _ c(w(o,/a’l;lB))‘S

din(e) — daf(3) = Lep) 50,5 B)
zc(w(wo,al;D))5
w(we,a; D)/~

By the same reasoning as above, (3) also implies (2). O

LEMMA 2.2. Suppose that D is a bounded Jordan domain in C and
that 20 € D. Then the following conditions are equivalent:

(1) There exist constants ¢ and § > 0 such thar

dia(a1) < C(fx'(Zo, ay; D)) ’

dia{a) = \w(zo,a;D)

for all arcs oy C a C 8D.
(2) There exists a constant ¢ > 1 such that

(2.3) w(zo,a; D) < cw(zg,a;; D)
for all arcs ay C a« C 8D with

dia(e) < 2dia(ay).
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Proof. First we assume that (1) holds and let a; C a be arcs on 8D
with
dia(a) < 2dia(a;).

Then by (1)

w(zg,01; D) _1 /dia(a;)\ % _1
22T ) S i St VA TR 3
w(zo,a; D) — ¢’ ( ) Z (2¢)

and hence we have
w(20,; D) < dw(zg,ay; D),

where ¢ = (2¢)3.
Next suppose that (2) holds. We show first that

(2.4) w(z0,a; D) < c"w(z9,a;; D)
for all arcs oy C a C 8D with
dia(a) < 2"dia(ay).
By (2.3), inequality (2.4) is true for n = 1. Now we assume that it is
true for n = k > 1 and suppose that we have arcs a; C a C 8D such

that
dia(a) < 2¥+1dia(ay).

Then since (2.4) is true for n = k, we may assume that
2Fdia(a;) < dia(a) < 2%+1dia(a, ),
since otherwise we would have
dia(e) < 2*dia(a,)

whence
w(z0,a; D) < ckw(zo,ozl;D) < ck+lw(z0,a1;D).
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If v is an arc with a1 C v C a C 8D, then dia(y) increases continuously
as the end points of v tend to the end points of a. Hence there exists
an arc v such that

a1 Cy1 CaCdD

and

dia(a) = 2dia(yy).

Then
dia(7;) < 2*dia(e)

and by (2.4) withn =%k and n = 1,

w(zp,a; D) w(zo,; D) w(z20,71; D) < ookl — k1
= <ec™T ="
w(zo,a1; D) w(z0,71; D) w(z0,01; D)

Thus
w(z0,; D) < " w(29, 01; D)

and this establishes (2.4).
Next given any arcs a; C a C dD, there exists an integer n > 0 such
that

(2.5) 2" 1dia(a ) < dia{a) < 2"dia(aq ).
Then by (2.4) we have

(2.6) w(zo,a; D) < c"w(zp,a1; D).
Let 6 = %g%. Then by (2.5) and (2.6) we obtain

n-—1

W(Zo, a; D)

— 2n—1 %
w(zo,ar1; D) C( )

<= c(2'bl')

Hence we get
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where ¢’ = ¢®. Hence (2) implies (1). O

Proof of Main Theorem. Suppose first that a bounded Jordan domain
D in Cis a c¢-John disk with a John center z;. We want to show that
there exists a constant ¢y > 0 such that

w(z0,a; D) < cow(zo, B; D)
for each pair of consecutive arcs a, # on 8D with
dia(a) < 2dia(3).

Suppose not. Then for j = 1,2, ... there are consecutive arcs aj, Bj
on 8D such that

(2.7)  dia(a;) < 2dia(F;) and w(z0,aj; D) > 37w(zo, Bj; D).
Thus
dia(a; U ;) < 3dia(B;)
and hence by (3) of Lemma 2.1 with wo = 2z and (2.7)
dxa(ﬂ]) C( w(ZQ,ﬁj;D) )6
dia(a; U B;) = \w(ze,a; U B;; D)

w(zo, Bj; D) \* —j\6
<(Cnap) <)

1
=<
5 <

bl

which yields a contradiction as j — oc.

Suppose next that a bounded Jordan domain D in C satisfies a har-
monic doubling condition (1.2). To show that D is a c-John disk, it
suffices to show that D satisfies (2.3) by Lemma 2.1 with wo = 2z and
Lemma 2.2.

Let a; C a be arcs of 8D with

dia(a) < 2dia(a;)

and let ¢; = 2(co + 1).



152 Kiwon Kim
Suppose first that a3, « have a common end point. Then
dia(a \ a1) < 2dia(a;)
and hence by (1.2) we have
w(zo,a \ a1; D) < cow(z0,a1; D)
for some 2o € D. Thus
w(zo,a; D) < (co + )w(z0,a1; D).

Next suppose that a \ a; consists of two disjoint subarcs az,a3 C a.
Then
dia(cn U (12) S 2dia(a1)

and hence
w(zo,a1 Uag; D) < (e + 1)w(z0,a1; D)

by what was proved above. The same argument also gives
w(z0,a1 Uas; D) < (o + 1w(z0,a1; D)

and hence
w(z0,a; D) < 2(co + 1)w(z0,1; D).

This completes the proof of Main Theorem. O
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