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ON CANTOR SETS AND PACKING MEASURES

Chun Wei and Sheng-You Wen

Abstract. For every doubling gauge g, we prove that there is a Cantor
set of positive finite Hg-measure, Pg-measure, and P

g

0 -premeasure. Also,

we show that every compact metric space of infinite P
g

0 -premeasure has
a compact countable subset of infinite P

g

0 -premeasure. In addition, we
obtain a class of uniform Cantor sets and prove that, for every set E in
this class, there exists a countable set F , with F = E∪F , and a doubling
gauge g such that E ∪ F has different positive finite Pg-measure and
P

g

0 -premeasure.

1. Introduction

Let X be a metric space. Let g: [0,∞) → [0,∞) be a gauge, i.e., a nonde-
creasing continuous function, with g(t) = 0 if and only if t = 0. Let E ⊂ X and
δ > 0. A δ-packing of E is a family of disjoint balls {B(xi, ri)} with 2ri ≤ δ
and xi ∈ E. For every δ-packing {B(xi, ri)} of E one has a sum

∑
g(2ri). Let

Pg
δ (E) = sup

∑
g(2ri) be the supremum of such sums. The packing premeasure

of E with respect to the gauge g is defined by

Pg
0 (E) = lim

δ→0
Pg
δ (E).

The packing measure of E with respect to the gauge g is defined by

Pg(E) = inf

{
∞∑

i=1

Pg
0 (Ei) : E ⊂

∞⋃

i=1

Ei

}
.

When g(t) = ts, where s > 0, the above definitions give us the ordinary s-
dimensional packing premeasure and measure, which are denoted by Ps

0 and
Ps, respectively. The packing dimension of a subset E of X is defined by

dimP E = inf{s > 0 : Ps(E) = 0} = sup{s > 0 : Ps(E) = ∞}.
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The packing measure and dimension were introduced by C. Tricot [15] in
1982. See also [14]. The packing measure on a given metric space is a metric
outer measure. The packing premeasure is monotonic and finitely subadditive,
but it is usually not an outer measure, because it is not countably subadditive.
If E is a subset of X , then

(1.1) Pg
0 (E) = Pg

0 (E),

where E denotes the closure of the set E. If E and F are subsets of X with
dist(E,F ) > 0, then

(1.2) Pg
0 (E ∪ F ) = Pg

0 (E) + Pg
0 (F ).

The s-dimensional packing premeasure can be used to give an equivalent
definition for the upper box-counting dimension dimBE of a subset E of a
metric space (see [3] for other definitions of dimBE). That is,

dimBE = inf{s > 0 : Ps
0(E) = 0} = sup{s > 0 : Ps

0(E) = ∞}.

The packing dimension is different from the upper box-counting dimension.
The former is countably stable, but the latter is not. However, if E is a compact
subset of a complete metric space X , such that dimBE = dimB(E ∩ U) for all
open sets U ⊂ X with U ∩E 6= ∅, then, by Baire’s category theorem, one has

dimP E = dimBE (cf. Falconer [3]).

The packing dimension is also different from the Hausdorff dimension. Indeed,
given 0 ≤ s1 ≤ s2 ≤ 1, one may construct a middle interval Cantor set E (see
its definition in (1.5)) with dimH E = s1 and dimP E = s2.

The packing measure Pg is used in the study of fractals in a way dual to
the Hausdorff measure Hg. If X is a separable metric space and g is a gauge,
then we have Hg ≤ Pg by a basic covering argument (cf. Mattila [9]). On the
other hand, for the packing measure Pn and the Hausdorff measure Hn on R

n

we have ΩnHn = ΩnPn = Ln, where Ln is the Lebesgue measure on R
n and

Ωn = Ln(B(0, 1/2)). For further study on the relationship between packing
measure and Hausdorff measure we refer to Feng [4] and Rajala [12].

We say that a gauge g is doubling, if there are constants C, δ > 0 such that

g(2t) ≤ Cg(t)

for all t ∈ (0, δ). Clearly, a gauge g is doubling if and only if

(1.3) λg = lim
x↑1

lim inf
t↓0

g(xt)

g(t)
> 0.

Wen and Wen [16] proved that for every doubling gauge g there is a compact
metric space X such that 0 < Pg(X) < +∞. This result is in some sense dual
to a theorem of Devoretzky for the Hausdorff measure (cf. [2, 13]). In this
paper we shall give a constructive proof for the following:
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Theorem 1. Let g be a doubling gauge. Then there is a positive integer n and

a Cantor set E in the Euclidean n-space such that

(1.4) 0 < Hg(E) ≤ Pg(E) ≤ Pg
0 (E) < ∞.

Self-similar sets with the strong separation condition are a subclass of Cantor
sets. One may ask that if the Cantor set in Theorem 1 can be always chosen
from self-similar sets. The answer to the question is “no”. In fact, by [17], a
self-similar set E of dimension s with the open set condition has the property
(1.4) for some doubling gauge g if and only if

0 < lim inf
t→0

g(t)

ts
≤ lim sup

t→0

g(t)

ts
< ∞.

It follows that, for g(t) = ts log 1
t , all self-similar sets with the open set condition

do not satisfy (1.4). On the other hand, we note that there are Cantor sets,
for which there is no gauge satisfying (1.4) (cf. Peres [10, 11]).

Feng-Hua-Wen [5] proved that Ps
0(K) = Ps(K), if K ⊂ R

n is a compact set
of finite Ps

0 -premeasure, where s > 0. This result may be extended. Indeed,
we have Pg(K) ≍ Pg

0 (K) for all compact subsets K of X , provided that g is a
doubling gauge and that X is a metric space of locally finite Pg

0 -premeasure,
where the comparability constant is independent of K (cf. [16]). Recall that a
metric space X is of locally finite Pg

0 -premeasure, if for every x ∈ X there is
a r > 0 such that the ball B(x, r) is of finite Pg

0 -premeasure. We shall prove
that Feng-Hua-Wen’s Theorem in the extended form can be inverted.

Theorem 2. Let X be a metric space and g be a doubling gauge. Then the

following statements are equivalent.

(1) X is of locally finite Pg
0 -premeasure.

(2) Pg(K) ≍ Pg
0 (K) for all compact subsets K of X.

M. Csörnyei [1] constructed a Cantor set E with the following property:
There is a countable set F , with F = E ∪F , and a doubling gauge g, such that

Pg(E ∪ F ) < Pg
0 (E ∪ F ) < ∞.

This shows that Feng-Hua-Wen’s inequality can not be extended to doubling
gauges. We shall prove that a class of regular Cantor sets are examples of sets
with this property.

Now we define uniform Cantor sets. Let {nk}∞k=1 be a sequence of positive
integers and {ck}∞k=1 a sequence of real numbers in (0, 1) with nkck < 1 for all
k ≥ 1. The uniform Cantor set E({nk}, {ck}) is defined by

(1.5) E({nk}, {ck}) =
∞⋂

k=0

Ek,

where {Ek} is a sequence of nested compact sets in [0, 1], E0 = [0, 1], and
Ek is obtained by deleting nk open intervals of equal length ck|I| from every
component I of Ek−1, such that the remaining nk + 1 closed intervals of I are
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of equal length. In the case where nk = 1 for all k ≥ 1, we also say that E is a
middle internal Cantor set.

For a uniform Cantor set E = E({nk}, {ck}) we denote by Gk the collection
of components of Ek−1 \ Ek. A member in Gk is also called a gap of level k.
Denote by Nk, δk, and εk, respectively, the number of components of Ek, the
length of a component of Ek, and the length of a gap of level k. Then

(1.6) Nk =

k∏

i=1

(ni + 1), δk =

k∏

i=1

1− nici
ni + 1

, and εk = ckδk−1.

With the above notation, the cardinality card(Gk) of Gk is nkNk−1. Feng-Wen-
Wu [7] showed that the packing dimension of E can be determined by

(1.7) dimP E = lim sup
k→∞

logNk

− log δk−1

nk+1

.

Theorem 3. Let E = E({nk}, {ck}) be a uniform Cantor set. Suppose that

there exists a strictly increasing sequence of positive integers {jk}∞k=1 such that

(a) N := 1 + max{supk njk , supk njk+1} < ∞;
(b)

∑∞

k=1 Njk/Njk+1
< ∞;

(c) 1− njkcjk ≤ Njk/Njk+1
for every k ≥ 1; and

(d) 1− njk−1cjk−1 ≤ 1/5 and 1− njk+1cjk+1 ≤ 1/5 for every k ≥ 1.

Then there is a countable set F ⊂ [0, 1] with F = E ∪ F and a doubling gauge

g such that

0 < Pg(E ∪ F ) < Pg
0 (E ∪ F ) < ∞.

As we shall see in Section 5, for every s ∈ [0, 1/2], there exists a uniform
Cantor set E of dimP E = s, which satisfies the conditions of Theorem 3.

Theorem 1, Theorem 2, and Theorem 3 will be proved in Sections 2, 3, and
4, respectively. The discussion of Theorem 3 is clearly not complete. Some
remarks are included in Section 5.

2. Proof of Theorem 1

A cube Q(x, r) in R
n is a subset of the form Q(x, r) =

∏n
i=1[xi − r, xi + r].

For a cube Q we denote by ℓ(Q) its side length. Let g be a doubling gauge and
E a subset of Rn. Define

H̃g(E) = lim
δ→0

H̃g
δ(E),

where H̃g
δ(E) = inf

∑
g(ℓ(Qi)) with the infimum being taken over all coverings

of E by cubes of side length ≤ δ. Define

P̃g
0 (E) = lim

δ→0
P̃g
δ (E),
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where P̃g
δ (E) = sup

∑
g(ℓ(Qi)) with the supremum being over all packings of

E by cubes of side length ≤ δ centered in E. Then we easily see that

(2.1) C−1H̃g(E) ≤ Hg(E) ≤ CH̃g(E) and C−1P̃g
0 (E) ≤ Pg

0 (E) ≤ CP̃g
0 (E),

where the comparability constant C depends only on g and n.
Now we are ready to prove Theorem 1. Since the gauge g is doubling, there

exists a positive integer n such that g(2t) < 2ng(t) for sufficiently small t > 0.
We are going to construct a Cantor set E in the Euclidean space R

n such that

(2.2) 0 < Hg(E) ≤ Pg(E) ≤ Pg
0 (E) < ∞.

For every integer k ≥ 0 let δk be a positive number satisfying g(δk) = 2−nk.
Without loss of generality, assume that g(2t) < 2ng(t) for all t ∈ (0, δ0]. Then
for every k ≥ 1 we have 2δk < δk−1, because g is nondecreasing with g(2δk) <
2ng(δk) = g(δk−1). Let E be a Cantor dust-like set in the cube [0, δ0]

n defined
as

E =

∞⋂

k=0

Ek,

where E0 = [0, δ0]
n and Ek is obtained by replacing every component Q of

Ek−1 with its 2n disjoint subcubes of side length δk. By the definition, Ek

consists of 2nk disjoint cubes of side length δk.
Let µ be the unique Borel probability measure on E such that for every

component I of Ek

µ(I) = 2−nk.

To prove (2.2), in view of (2.1), it suffices to show H̃g(E) > 0 and P̃g
0 (E) < ∞.

For every cube J with side length ℓ(J) < δ0, let k ≥ 0 be the integer such
that δk+1 ≤ ℓ(J) < δk, then J intersects at most 2n components of Ek, and so

µ(J) ≤ 2n2−nk = 4ng(δk+1) ≤ 4ng(ℓ(J)),

which, combined with the mass distribution principle, yields H̃g(E) ≥ 4−n.
For every cube Q(x, r) with r < δ0 and x ∈ E, let k be the integer such that

δk+1 ≤ r < δk, then Q(x, r) contains at least one component of Ek+1, and so

µ(Q(x, r)) ≥ 2−n(k+1) = 2−ng(δk) ≥ 2−ng(r) ≥ 4−ng(ℓ(Q)),

which, together with the definition of Pg
δ (E), yields Pg

δ (E) ≤ 4n. Letting δ → 0

we obtain P̃g
0 (E) ≤ 4n. This completes the proof. ✷

Corollary 1. For every s > 0 there is a Cantor set E of dimP E = s and of

Ps(E) = 0.

Proof. Let g be a gauge with

g(t) = ts log 1
t

for 0 < t < e−1/s and let n > s be an integer. Then we have g(2t) < 2ng(t)
for 0 < t < e−1/s/2. By Theorem 1 we may choose a Cantor set E such that
0 < Pg(E) < ∞. Clearly, the set E is of dimP E = s and of Ps(E) = 0. �
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Corollary 2. For every s > 0 there is a Cantor set E of dimP E = s and of

non-σ-finite Ps-measure.

Proof. Let g be a gauge with

g(t) = ts/ log
1

t

for 0 < t < e1/s and let n > s be an integer. Then we have g(2t) < 2ng(t) for
sufficiently small t > 0. By Theorem 1 we may choose a Cantor set E such that
0 < Pg(E) < ∞. It is clear that the set E is of dimP E = s and of non-σ-finite
Ps-measure. �

3. Proof of Theorem 2

The implication “(1) ⇒ (2)” is the extended Feng, Hua, Wen’s Theorem. A
proof can be found in [16]. Now we prove the implication “(2) ⇒ (1)”. Assume
that X is not of locally finite Pg

0 -premeasure. Then there is a point x ∈ X such
that

(3.1) Pg
0 (B(x, ε)) = ∞ for all ε > 0.

We are going to construct a compact countable subset C ofX with Pg
0 (C) = ∞.

Let ε1 > 0 be arbitrarily given. From (3.1) we have Pg
ε1(B(x, ε1)) = ∞, so

there is a finite ε1-packing of B(x, ε1) by closed balls {B(xi, ri)}mi=1 such that

m∑

i=1

g(2ri) > g(2ε1) + 1.

It is clear that, in the above ε1-packing, there is at most one ball containing x.
Let B1 = {B(xi, ri) : x /∈ B(xi, ri), 1 ≤ i ≤ m}. Then B1 is a finite ε1-packing
of B(x, ε1) with

x /∈
⋃

B∈B1

B and
∑

B∈B1

g(2rB) > 1,

where, for a ball B(x, r), we write xB for x and rB for r.
Let ε2 = min{ε1, dist(x,∪B∈B1

B)}/3 > 0. Then Pg
ε2(B(x, ε2)) = ∞. By the

same argument as above, we have a finite ε2-packing B2 of B(x, ε2) such that

x /∈
⋃

B∈B2

B and
∑

B∈B2

g(2rB) > 1.

Note that B1 ∪ B2 is still a family of disjoint closed balls.
Proceeding infinitely, we get a sequence of positive numbers {εi} and a

sequence of ball families {Bi} such that {εi} decreases strictly to 0, each Bi is
a finite εi-packing of B(x, εi) with

x /∈
⋃

B∈Bi

B and
∑

B∈Bi

g(2rB) > 1,

and that ∪∞
i=1Bi is a family of disjoint closed balls.
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Let
C = {x} ∪ {xB : B ∈ ∪∞

i=1Bi}.

Then C has just one accumulation point x, so C is a compact countable set
in X . Next we show that C has infinite packing premeasure. In fact, for each
δ > 0 choose a sufficiently large integer n such that 2εi ≤ δ for all i ≥ n, then
∪∞
i=nBi is a δ-packing of C, so

Pg
δ (C) ≥

∞∑

i=n

∑

B∈Bi

g(2rB) ≥
∞∑

i=n

1 = ∞,

which yields Pg
0 (C) = ∞ by letting δ → 0.

Now, since C is countable, one has Pg(C) = 0. This shows that there is a
compact set C with Pg(C) = 0 and Pg

0 (C) = ∞, contradicting the statement
(2). This completes the proof. ✷

According to Joyce and Preiss [8], every compact metric space of infinite
Pg-measure has a compact subset of finite positive Pg-measure. By contrast,
from the proof of Theorem 2 we have the following:

Corollary 3. Let X be a compact metric space and g be a doubling gauge. If

Pg
0 (X) = ∞, then there is a compact countable subset C of X with Pg

0 (C) = ∞.

4. Proof of Theorem 3

Let E = E({nk}, {ck}) be a uniform Cantor set and let Nk, δk, εk, and Gk

be the related data defined as in (1.6). Let µ be the unique Borel probability
measure on E such that µ(I) = 1/Nk for every component I of Ek and for
every k ≥ 1. Let {jk}∞k=1 be a strictly increasing sequence of positive integers,
for which E satisfies the conditions of Theorem 3. We are going to prove that
there is a countable set F , with F = E ∪F , and a doubling gauge g, such that

0 < Pg(E ∪ F ) < Pg
0 (E ∪ F ) < ∞.

From the conditions (a), (b), and (c), we see that {nj
k
+1}∞k=1 is bounded,

limk→∞ Njk/Njk+1
= 0, and 1 − njkcjk ≤ Njk/Njk+1

, so there is an integer
k0 ≥ 1 such that jk+1 − jk > 1 and εjk > 4δjk for every k ≥ k0. Note also that
the condition (d) implies εjk−1 > 4δjk−1 and εjk+1 > 4δjk+1 for every k ≥ 1.
Here and in what follows please do not confuse the indexes jk + 1 and jk+1.

Constructing a gauge g. For every k ≥ k0 let

hjk = εjk+1 + δjk+1, fjk = εjk + δjk + δjk+1, and ejk = εjk + δjk + 2δjk+1.

Clearly, ejk > fjk > hjk . Since jk+1 > jk + 1, one has

hjk > δjk+1 ≥ εjk+1
+ 2δjk+1

> ejk+1
.

We define a gauge g on [0, 2ejk0 ] as follows: For every k ≥ k0 let

g(2fjk) =
1

(N + 1)Njk

and g(x) =
1

Njk+1

for 2ejk+1
≤ x ≤ 2hjk ,
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and then we extend g to the intervals [2hjk , 2fjk ] and [2fjk , 2ejk ] linearly.

Constructing a countable set F . For each k > k0 we define a finite set Fk by
taking one point from every gap of level jk − 1 as in the following

Fk = {e−(J) + 4δjk+1 : J ∈ Gjk−1},

where e−(J) denotes the left endpoint of the gap J . Let

F =
⋃

k>k0

Fk.

Clearly, card(Fk) = card(Gjk−1) = njk−1Njk−2, F is countable, and F = E∪F .

Claim 1. Pg
0 (E) ≤ N

N+1 .

Proof. Put l0 = min1≤j≤jk0+1
min{εj, δj}. It suffices to prove

g(|P |) ≤
N

N + 1
µ(P )

for every interval P of length |P | ∈ (0, l0) with its midpoint x(P ) ∈ E.
Let P be such an interval. Let k > k0 be the unique integer such that P

meets exactly one component of Ejk−1+1 and at least two of Ejk+1. Then

2εjk+1 ≤ |P | ≤ 2hjk−1
.

Let I be the component of Ejk+1 containing the midpoint of P . Since |P | ≥
2εjk+1 ≥ 8δjk+1, one has P ⊇ I, so µ(P ) ≥ 1/Njk+1. Therefore, for the case
2εjk+1 ≤ |P | ≤ 2fjk we have from the definition of g that

g(|P |) ≤ g(2fjk) =
1

(N + 1)Njk

≤
N

N + 1
µ(P ).

For another case 2fjk < |P | ≤ 2hjk−1
, we see from the choice of fk that P

contains at least njk+1+2 components of Ejk+1, so µ(P ) ≥ (njk+1 + 2)/Njk+1,
and so

g(|P |) ≤ g(2hjk−1
) =

1

Njk

=
njk+1 + 1

Njk+1
≤

N

N + 1
µ(P ).

This completes the proof of Claim 1. �

Claim 2. Pg
0 (F ) ≥ 1.

Proof. It suffices to show that for every k > k0 there is a 2ejk -packing P of F
such that ∑

P∈P

g(|P |) ≥
∑

P∈P

µ(P ) = 1.

To this end, we shall construct a 2ejk -packing P of F such that g(|P |) = µ(P )
for every P ∈ P and that µ(∪P∈PP ) = 1.

Let k > k0 be fixed. Let

Pk = {[x− ejk , x+ ejk ] : x ∈ Fk}.
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Then, by the definitions of ejk and Fk, intervals in Pk are of the form

[e−(J)− εjk − δjk + 2δjk+1, e
−(J) + εjk + δjk + 6δjk+1],

where, as mentioned, J ∈ Gjk−1 and e−(J) is the left endpoint of J . Since
εjk−1 ≥ 4δjk−1 > εjk + δjk + 6δjk+1 and 0 < εjk − 2δjk+1 < εjk , we see that
intervals in Pk are pairwise disjoint and that every interval in Pk contains
exactly one component of Ejk and meets no others. Therefore,

g(|P |) = g(2ejk) =
1

Njk

= µ(P )

for every P ∈ Pk and
(4.1)

µ

(
⋃

P∈Pk

P

)
=

card(Fk)

Njk

=
njk−1Njk−2

Njk

=
njk−1

(njk + 1)(njk−1 + 1)
≥

1

2N
.

Now suppose that Pk,Pk+1, . . . ,Pn−1 have been defined for some n > k. We
define

Pn =

{
[x− ejn , x+ ejn ] : x ∈ Fn \

n−1⋃

i=k

⋃

P∈Pi

P

}
.

Inductively, we may define a sequence of interval families {Pn}∞n=k.
Let P = ∪∞

n=kPn. It is clear that the family P is pairwise disjoint. Given
n ≥ k, noting that every interval in Pn contains exactly one component of Ejn

and meets no others, we have g(|P |) = 1/Njn = µ(P ) for every P ∈ Pn. Next
we show that

(4.2) µ

(
⋃

P∈Pn

P

)
≥

1

2N
µ

(
Ejk−1 \

n−1⋃

i=k

⋃

P∈Pi

P

)
.

Let E∗
jn−1

= {I : I is a component of Ejn−1
and I ⊆ Ejk−1 \ ∪

n−1
i=k ∪P∈Pi

P}.
We easily see that

µ

(
Ejk−1 \

n−1⋃

i=k

⋃

P∈Pi

P

)
= µ




⋃

I∈E∗

jn−1

I


 .

Let I be an interval in E∗
jn−1

and let Pn,I = {[x − ejn , x + ejn ] : x ∈ Fn ∩ I}.
Then we have

Pn =
⋃

I∈E∗

jn−1

Pn,I .

Therefore, to prove (4.2), it reduces to show that

µ


 ⋃

P∈Pn,I

P


 ≥

µ(I)

2N
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for every I ∈ E∗
jn−1

. This is true, in fact, the cardinality

card(Pn,I) = njn−1

jn−2∏

i=jn−1+1

(ni + 1) =
njn−1Njn−2

Njn−1

and the measure µ(I) = 1/Njn−1
, which imply that

µ


 ⋃

P∈Pn,I

P


 =

njn−1Njn−2

Njn−1

·
1

Njn

=
njn−1

(njn−1 + 1)(njn + 1)Njn−1

≥
µ(I)

2N
.

This proves the inequality (4.2), and by which we have µ(∪P∈PP ) = µ(Ejk−1)
= 1. Therefore, P is a 2ejk -packing of F with the desired properties. This
completes the proof of Claim 2. �

Claim 3. Pg
0 (F ) < ∞.

Proof. For every l0-packing P of F let Pk = {P ∈ P : m(P ) ∈ Fk}, where
m(P ) denotes the midpoint of the interval P and l0 is the same as that in the
proof of Claim 1. We are going to show that

∑

k>k0

∑

P∈Pk

g(|P |)

is bounded by a constant independent of P . Let P ∈ Pk. Consider three cases.
Case 1. P does not contain any component of Ejk+1. In this case, we have

|P | ≤ 10δjk+1 ≤ 2εjk+1 + 2δjk+1 = 2hjk , so

g(|P |) ≤ g(2hjk) =
1

Njk+1

.

Case 2. P contains a component of Ejk+1 and meets only one component of
Ejk−1+1. In this case, we have µ(P ) ≥ 1/Njk+1 and |P | < 2hjk−1

, so

g(|P |) ≤ g(2hjk−1
) =

1

Njk

=
njk+1 + 1

Njk+1
≤ Nµ(P ).

Case 3. P meets at least two components of Ejk−1+1. In this case, there is
an integer n ≤ k− 1 such that P meets only one component of Ejn−1+1 and at
least two of Ejn+1. Arguing as we did in Claim 1, we have

g(|P |) ≤
N

N + 1
µ(P ).

Together the above three cases, we have

∑

k>k0

∑

P∈Pk

g(|P |) ≤
∑

k>k0

∑

P∈Pk

(
1

Njk+1

+Nµ(P ) +
N

N + 1
µ(P )

)

≤ N +
N

N + 1
+
∑

k>k0

card(Pk)

Njk+1

.
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Now, observing that card(Pk) ≤ Njk−2njk−1, we have from the condition (b)
that

∑

k>k0

card(Pk)

Njk+1

≤
∑

k>k0

Njk−2njk−1

Njk+1

<
1

2

∞∑

k=1

Njk

Njk+1

< ∞,

and so
∑

k>k0

∑
P∈Pk

g(|P |) is bounded. This proves Claim 3. �

Claim 4. g(2x) ≤ 2(N + 1)g(x) for all x ∈ (0, hj
k0

].

Proof. Given k ≥ k0, since g(2x) = 1/Njk+1 for all x ∈ [ejk+1
, hjk ], we have

(4.3)
g(2ejk+1

)

ejk+1

>
g(2hjk)

hjk

.

On the other hand, since

hjk = εjk+1 + δjk+1 ≤ δjk and fjk = εjk + δjk + δjk+1 ≥
δjk−1

N
,

we have from the condition (c) that

(4.4)
g(2hjk)

hjk

≥
(N + 1)Njkδjk−1

Njk+1
δjkN

g(2fjk)

fjk
>

g(2fjk)

fjk
.

It follows from (4.3), (4.4), and the definition of g that the function g(2x)/x is
decreasing on [ejk+1

, fjk ].
Now we are ready to prove g(2x) ≤ 2(N + 1)g(x) for all x ∈ (0, hj

k0

].

Given x ∈ (0, hj
k0

], let k > k0 be the integer such that x ∈ (hjk , hjk−1
]. Since

hjk < fjk < ejk < 2fjk < 2ejk < hjk−1
by the choices of these quantities, one

may write

(hjk , hjk−1
] = (hjk , fjk ] ∪ (fjk , ejk ] ∪ (ejk , 2fjk ] ∪ (2fjk , 2ejk ] ∪ (2ejk , hjk−1

].

Case 1. x ∈ (hjk , ejk ] = (hjk , fjk ] ∪ (fjk , ejk ]. Since 2ejk+1
< hjk < ejk <

2fjk , we have x/2 ∈ [ejk+1
, fjk ]. When x ∈ (hjk , fjk ], it follows from the

monotonicity of g(2x)/x that

g(2x)

g(x)
= 2

g(2x)/x

g(x)/(x/2)
< 2.

When x ∈ [fjk , ejk ], we have

g(2x)

g(x)
≤

g(2ejk)

g(fjk)
=

(N + 1)g(2fjk)

g(fjk)
< 2(N + 1).

Case 2. x ∈ [ejk , 2fjk ]. We have

g(2x)

g(x)
≤

g(4ejk)

g(fjk)
≤

g(2fjk)

g(fjk)
·
g(2hjk−1

)

g(2fjk)
≤ 2(N + 1).

Case 3. x ∈ [2fjk , 2ejk ]. We have

g(2x)

g(x)
≤

g(4ejk)

g(2fjk)
≤

g(2hjk−1
)

g(2fjk)
≤ N + 1.



1748 CHUN WEI AND SHENG-YOU WEN

Case 4. x ∈ [2ejk , hjk−1
]. We have

g(2x)

g(x)
≤

g(2hjk−1
)

g(2ejk)
= 1.

This completes the proof of Claim 4, so g is doubling. �

Claim 5. Pg
0 (E) ≥ 1

2(N+1)2 .

Proof. Let k > k0 be fixed. Let

Pk = {[e−(J)− εjk − δjk , e
−(J) + εjk + δjk ] : J ∈ Gjk−1}.

Then, since εjk−1 > εjk + δjk , intervals in Pk are pairwise disjoint. Also, one
has

(4.5) µ

(
⋃

P∈Pk

P

)
=

njk−1Njk−2

Njk

≥
1

2N
.

On the other hand, we have from Claim 4 that

(4.6) g(|P |) = g(2(εjk + δjk)) ≥ g(fjk) ≥
g(2fjk)

2(N + 1)
≥

µ(P )

2(N + 1)2

for every P ∈ Pk.
By an analogous argument as we did in Claim 2, we may inductively define

a sequence of interval families {Pn}
∞
n=k, such that every Pn has the properties

(4.5) and (4.6). Let P = ∪∞
n=kPn. Then it can be checked that P is a (εjk+δjk)-

packing of E with µ(∪P∈PP ) = 1 and g(|P |) ≥ µ(P )/(2(N + 1)2) for every
P ∈ P . The desired inequality then follows. �

Finally, Claims 1-5, combined with Theorem 2 and Equality (1.1), gives the
conclusion of Theorem 3.

5. Remarks on Theorem 3

Remark 1. At first, we prove that, for every s ∈ [0, 1/2], there is a middle
interval Cantor set E of dimP E = s satisfying the conditions of Theorem 3.

Let {jk}∞k=1 be a sequence of positive integers defined by

(5.1) j1 = 2 and jk+1 = jk + k + 2 for every k ≥ 1.

Clearly, jk = k(k + 3)/2 by (5.1), so one has limk→∞ jk/(k
2/2) = 1. Let

E = E({ck}) be a middle interval Cantor set with

1− cjk = 2−k−2 and 1− cjk−1 = 1− cjk+1 = 1/8

for every k ≥ 1. It can be checked that E satisfies the conditions of Theorem
3, no matter how cj ∈ (0, 1) is chosen for j ∈ N1, where

N1 = N \ ∪k≥1{jk − 1, jk, jk + 1}.

Now, given s ∈ [0, 1/2], we are going to choose cj for j ∈ N1 such that
dimP E = s. We consider three cases.
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Case 1. 0 < s < 1/2. Let 1− cj = 2−α for every j ∈ N1, where α = 1/s− 2.
For every k > j1 let l = l(k) be the biggest integer such that jl < k. Then
limk→∞ k/(l2/2) = 1. By the construction of E, the number of components of
Ek is 2k and the length of a component of Ek is

δk =

k∏

i=1

1− ci
2

= 2−k · 2−(3+4+···+(l+2)) · 8−2l · 2−α(k−3l),

so

logNk = k log 2 and lim
k→∞

(− log δk)/((2 + α)k log 2) = 1.

It then follows from the formula (1.7) that

dimP E =
1

2 + α
= s.

Case 2. s = 0. Let 1 − cj = 2−j for every j ∈ N1. We easily see that
dimP E = 0.

Case 3. s = 1/2. Let 1 − cj = 2−1/j for every j ∈ N1. We see that
dimP E = 1/2.

Remark 2. Secondly, we show that every uniform Cantor set E satisfying the
condition (c) of Theorem 3 is of dimP E ≤ 1/2.

Let E = E({nk}, {ck}) be a uniform Cantor set. Suppose it satisfies the
condition (c) of Theorem 3. By the packing dimension formula (1.7), we have

dimP E = lim sup
k→∞

logNk

− log δk−1

nk+1

= lim sup
logNk

logNk − logNk−1δk−1
,

from which we see that, to prove dimP E ≤ 1/2, it suffices to show

(5.2) lim inf
− logNk−1δk−1

logNk
≥ 1.

Let k > j1 be fixed. Let lk be the biggest integer such that jlk < k and let
Γk = {j1, j2, . . . , jlk}. Then it follows from the condition (c) of Theorem 3 that

Nk−1δk−1 =

k−1∏

i=1

(1− nici) ≤
∏

i∈Γk

(1− nici) ≤
Nj1

Njlk+1

,

which yields

lim inf
− logNk−1δk−1

logNk
≥ lim inf

logNjlk+1
− logNj1

logNk
≥ 1.

This proves the inequality (5.2), so one has dimP E ≤ 1/2.

Problem 1. Is there a uniform Cantor set of dimP E > 1/2 such that the
conclusion of Theorem 3 holds? The question is still open.
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Remark 3. Let E = E({nk}, {ck}) be a uniform Cantor set, without additional
restrictions. Let µ be the unique Borel probability measure on E such that
µ(I) = 1/Nk for every component I of Ek and for every k ≥ 1. Let g be the
distributive function of µ, i.e., g(t) = µ([0, t]) for all t ∈ [0,∞). Then the
function g is obviously a doubling gauge. We claim that

(5.3) 0 < Pg(E) ≤ Pg
0 (E) < ∞.

The fact is proved in [6]. Here we give a proof for the completeness. We first
show that the inequality

(5.4) µ(P )/4 ≤ g(|P |) ≤ 4µ(P )

holds for every interval P of length |P | ∈ (0, δ1) centered in E. Let P be such
an interval. Let k ≥ 1 be an integer such that δk ≤ |P |/2 < δk−1. Then we
have an integer mk, with 1 ≤ mk ≤ nk, such that

mkδk + (mk − 1)εk ≤ |P |/2 < (mk + 1)δk +mkεk.

Since the center of P is in E, we have

mk

Nk
≤ µ(P ) ≤

4mk

Nk
and

mk

Nk
≤ g(|P |) ≤

4mk

Nk
.

This proves (5.4). The inequality on the right of (5.4) directly gives Pg
0 (E) < 4.

Noting that µ is a doubling measure on E, the inequality on the left of (5.4),
together with Vitali’s covering lemma, yields Pg

0 (E) > 1/4. Now the desired
inequality (5.3) follows from Theorem 2.

Problem 2. We do not know whether Pg(E) < Pg
0 (E) for the gauge g in

Remark 3. The following question is also open: Is there a countable set F ,
with F = E ∪ F , such that E ∪ F has different positive finite Pg-measure and
Pg
0 -premeasure?
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