• Title/Summary/Keyword: divisor functions

Search Result 38, Processing Time 0.027 seconds

ON FOUR NEW MOCK THETA FUNCTIONS

  • Hu, QiuXia
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.345-354
    • /
    • 2020
  • In this paper, we first give some representations for four new mock theta functions defined by Andrews [1] and Bringmann, Hikami and Lovejoy [5] using divisor sums. Then, some transformation and summation formulae for these functions and corresponding bilateral series are derived as special cases of 2𝜓2 series $${\sum\limits_{n=-{{\infty}}}^{{\infty}}}{\frac{(a,c;q)_n}{(b,d;q)_n}}z^n$$ and Ramanujan's sum $${\sum\limits_{n=-{{\infty}}}^{{\infty}}}{\frac{(a;q)_n}{(b;q)_n}}z^n$$.

ARITHMETIC SUMS SUBJECT TO LINEAR AND CONGRUENT CONDITIONS AND SOME APPLICATIONS

  • Kim, Aeran;Kim, Daeyeoul;Sankaranarayanan, Ayyadurai
    • Honam Mathematical Journal
    • /
    • v.36 no.2
    • /
    • pp.305-338
    • /
    • 2014
  • We investigate the explicit evaluation for the sum $\sum_{(a,b,x,y){\in}\mathbb{N}^4,\\{ax+by=n},\\{C(x,y)}$ ab in terms of various divisor functions (where C(x, y) is the set of residue conditions on x and y) for various fixed C(x, y). We also obtain some identities and congruences as interesting applications.

REMARKS OF CONGRUENT ARITHMETIC SUMS OF THETA FUNCTIONS DERIVED FROM DIVISOR FUNCTIONS

  • Kim, Aeran;Kim, Daeyeoul;Ikikardes, Nazli Yildiz
    • Honam Mathematical Journal
    • /
    • v.35 no.3
    • /
    • pp.351-372
    • /
    • 2013
  • In this paper, we study a distinction the two generating functions : ${\varphi}^k(q)=\sum_{n=0}^{\infty}r_k(n)q^n$ and ${\varphi}^{*,k}(q)={\varphi}^k(q)-{\varphi}^k(q^2)$ ($k$ = 2, 4, 6, 8, 10, 12, 16), where $r_k(n)$ is the number of representations of $n$ as the sum of $k$ squares. We also obtain some congruences of representation numbers and divisor function.

Weierstrass semigroups at inflection points

  • Kim, Seon-Jeong
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.753-759
    • /
    • 1995
  • Let C be a smooth complex algebraic curve of genus g. For a divisor D on C, dim D means the dimension of the complete linear series $\mid$D$\mid$ containing D, which is the same as the projective dimension of the vector space of meromorphic functions f on C with divisor of poles $(f)_\infty \leq D$.

  • PDF

UNITARY ANALOGUES OF A GENERALIZED NUMBER-THEORETIC SUM

  • Traiwat Intarawong;Boonrod Yuttanan
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.355-364
    • /
    • 2023
  • In this paper, we investigate the sums of the elements in the finite set $\{x^k:1{\leq}x{\leq}{\frac{n}{m}},\;gcd_u(x,n)=1\}$, where k, m and n are positive integers and gcdu(x, n) is the unitary greatest common divisor of x and n. Moreover, for some cases of k and m, we can give the explicit formulae for the sums involving some well-known arithmetic functions.

THE RELATION PROPERTY BETWEEN THE DIVISOR FUNCTION AND INFINITE PRODUCT SUMS

  • Kim, Aeran
    • Honam Mathematical Journal
    • /
    • v.38 no.3
    • /
    • pp.507-552
    • /
    • 2016
  • For a complex number q and a divisor function ${\sigma}_1(n)$ we define $$C(q):=q{\prod_{n=1}^{\infty}}(1-q^n)^{16}(1-q^{2n})^4,\\D(q):=q^2{\prod_{n=1}^{\infty}}(1-q^n)^8(1-q^{2n})^4(1-q^{4n})^8,\\L(q):=1-24{\sum_{n=1}^{\infty}}{\sigma}_1(n)q^n$$ moreover we obtain the number of representations of $n{\in}{\mathbb{N}}$ as sum of 24 squares, which are possible for us to deduce $L(q^4)C(q)$ and $L(q^4)D(q)$.

CHANGING RELATIONSHIP BETWEEN SETS USING CONVOLUTION SUMS OF RESTRICTED DIVISOR FUNCTIONS

  • ISMAIL NACI CANGUL;DAEYEOUL KIM
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.3
    • /
    • pp.553-567
    • /
    • 2023
  • There are real life situations in our lives where the things are changing continuously or from time to time. It is a very important problem for one whether to continue the existing relationship or to form a new one after some occasions. That is, people, companies, cities, countries, etc. may change their opinion or position rapidly. In this work, we think of the problem of changing relationships from a mathematical point of view and think of an answer. In some sense, we comment these changes as power changes. Our number theoretical model will be based on this idea. Using the convolution sum of the restricted divisor function E, we obtain the answer to this problem.

COUNTING SUBRINGS OF THE RING ℤm × ℤn

  • Toth, Laszlo
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1599-1611
    • /
    • 2019
  • Let $m,n{\in}{\mathbb{N}}$. We represent the additive subgroups of the ring ${\mathbb{Z}}_m{\times}{\mathbb{Z}}_n$, which are also (unital) subrings, and deduce explicit formulas for $N^{(s)}(m,n)$ and $N^{(us)}(m,n)$, denoting the number of subrings of the ring ${\mathbb{Z}}_m{\times}{\mathbb{Z}}_n$ and its unital subrings, respectively. We show that the functions $(m,n){\mapsto}N^{u,s}(m,n)$ and $(m,n){\mapsto}N^{(us)}(m,n)$ are multiplicative, viewed as functions of two variables, and their Dirichlet series can be expressed in terms of the Riemann zeta function. We also establish an asymptotic formula for the sum $\sum_{m,n{\leq}x}N^{(s)}(m,n)$, the error term of which is closely related to the Dirichlet divisor problem.