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ON FOUR NEW MOCK THETA FUNCTIONS

QiuXia Hu

Abstract. In this paper, we first give some representations for four new

mock theta functions defined by Andrews [1] and Bringmann, Hikami and

Lovejoy [5] using divisor sums. Then, some transformation and summa-
tion formulae for these functions and corresponding bilateral series are

derived as special cases of 2ψ2 series
∞∑

n=−∞

(a, c; q)n

(b, d; q)n
zn

and Ramanujan’s sum
∞∑

n=−∞

(a; q)n

(b; q)n
zn.

1. Introduction

In his letter to G. H. Hardy [12], S. Ramanujan defined seventeen functions
M(q), |q| < 1, which he called mock θ-functions of order three, five and seven.
But Ramanujan did not explain precisely what he meant by mock theta func-
tions. The mock theta functions are interpreted by Andrews and Hickerson [2]
to mean a function f(q) defined by a q-series which converges for |q| < 1 and
satisfies the following two conditions:

(0) For every root of unity ξ, there is a theta function θξ(q) such that the
difference f(q)− θξ(q) is bounded as q → ξ radially.

(1) There is no single theta function which works for all ξ; i.e., for every theta
function θ(q) there is some root of unity ξ for which f(q)− θξ(q) is unbounded
as q → ξ radially.

G. N. Watson [13] found three third-order mock theta functions. In his
“lost” Notebook Ramanujan gave six sixth-order mock theta functions which
were studied by G. E. Andrews and D. Hickerson [2] and four tenth-order mock
theta functions which were studied by Choi [6]. B. Gordon and R. J. McIntosh
[8] generated eight eighth-order mock theta functions, but four of them were
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later found of lower order. Hikami [9] found one more mock theta function of
order two.

Andrews [1] generated new mock theta functions. Bringmann, Hikami and
Lovejoy [5] developed two more mock theta functions.

Throughout this paper, we adopt the standard notations in [7]. For |q| < 1,
the q-shifted factorial is defined by

(a; q)0 = 1, (a; q)n =

n−1∏
k=0

(1− aqk), n = 1, 2, 3, . . . , (a; q)∞ =

∞∏
k=0

(1− aqk).

It is easy to deduce from the definition of (a; q)n that, for a positive integer n,

(a; q)−n =
(−q/a)n

(q/a; q)n
qn(n−1)/2.

We also adopt the following compact notation for multiple q-shifted factorials:

(a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n,

where n is an integer or ∞ and m is a positive integer.
If |q1| > 1, then it holds

(a; q1)n =
( 1
a ; 1

q1
)∞

( 1
aqn1

; 1
q1

)∞
(−a)nq

(n
2)

1 .

The bilateral basic hypergeometric series is given by

rψr

[
a1, . . . , ar
b1, . . . , br

; q, z

]
=

∞∑
n=−∞

(a1, . . . , as; q)n
(b1, . . . , br; q)n

zn.

Two new mock theta functions of Andrews in [1] are defined by:

ψ0(q) =

∞∑
n=0

q2n
2

(−q; q)2n
,(1)

ψ1(q) =

∞∑
n=0

q2n
2+2n

(−q; q)2n+1
,(2)

and two new mock theta functions of Bringmann, Hikami and Lovejoy in [5]
are defined by:

φ0(q) =

∞∑
n=0

qn(−q; q)2n+1,(3)

φ1(q) =

∞∑
n=0

qn(−q; q)2n.(4)

Lemma 1.1 ([11, Corollary 2.9]). The following identities are true:

ψ0(q) + 2qφ0(q) = −J3,8

J2
(J1,2 − 2J2,4),(5)
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ψ1(q) + 2φ1(q) =
J1,8

J2
(J1,2 + 2J2,4).(6)

Here, let a and m be integers with m positive. Define

Ja,m := j(qa; qm), Jm := Jm,3m =
∏
i≥1

(1− qmi), Ja,m := j(−qa; qm).

In this paper, motivated by the work of Nikos Bagis [3] on divisor sums,
we first give some representations of some new mock theta functions using
divisor sums. Then, motivated by the work of James Mc Laughlin [10], some
transformation and summation formulae for these functions and corresponding
bilateral series are derived.

2. Divisor sums and new mock theta functions

Theorem 2.1. The function ψ0(q) is defined for all q ∈ C −D, where D =
{z ∈ C : |z| = 1}. For |q| < 1, we have

ψ0(q) =

∞∑
n=0

q2n
2

(−q; q)2n
(7)

=
1

χ(q)

∞∑
n=0

q2n
2

exp

− ∞∑
s=1

qs

s

∑
0<d|s,d≥2n+1

(−1)s/dd

 ,
ψ0(1/q) =

∞∑
n=0

qn

(−q; q)2n
(8)

=
1

χ(q)

∞∑
n=0

qn exp

− ∞∑
s=1

qs

s

∑
0<d|s,d≥2n+1

(−1)s/dd

 ,
ψ1(q) =

∞∑
n=0

q2n
2+2n

(−q; q)2n+1
(9)

=
1

χ(q)

∞∑
n=0

q2n
2+2n exp

− ∞∑
s=2

qs

s

∑
0<d|s,d≥2n+2

(−1)s/dd

 ,
ψ1(1/q) =

∞∑
n=0

qn+1

(−q; q)2n+1
(10)

=
1

χ(q)

∞∑
n=0

qn+1 exp

− ∞∑
s=2

qs

s

∑
0<d|s,d≥2n+2

(−1)s/dd

 ,
φ0(q) =

∞∑
n=0

qn(−q; q)2n+1(11)
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= χ(q)

∞∑
n=0

qn exp

 ∞∑
s=2

qs

s

∑
0<d|s,d≥2n+2

(−1)s/dd

 ,
φ1(q) =

∞∑
n=0

qn(−q; q)2n(12)

= χ(q)

∞∑
n=0

qn exp

 ∞∑
s=1

qs

s

∑
0<d|s,d≥2n+1

(−1)s/dd

 ,
where χ(q) = (−q; q)∞.

Proof. We only give the proof of the identity (8) in details here.
First, we have

(−q−1; q−1)n = q−(n+1
2 )(−q; q)n.

Then, by proper computations we get

ψ0(1/q) =

∞∑
n=0

qn

(−q; q)2n
=

1

(−q; q)∞

∞∑
n=0

qn(−q2n+1; q)∞

=
1

(−q; q)∞

∞∑
n=0

qn exp

[
log

∞∏
k=1

(1 + q2n+k)

]

=
1

(−q; q)∞

∞∑
n=0

qn exp

[ ∞∑
k=1

log(1 + q2n+k)

]

=
1

(−q; q)∞

∞∑
n=0

qn exp

[ ∞∑
k=1

∞∑
m=1

(−1)m+1q(2n+k)m

m

]
.

After substitutions (2n+ k)m = s, 2n+ k = d, we get our desired result (8).
Similarly, other identities in Theorem 2.1 can be also proved. �

3. Some transformation and summation formulas associated to new
mock theta functions

In this section, we will begin with transformation and summation formulas
for basic bilateral hypergeometric series:

∞∑
n=−∞

(e, f ; q)n
(aq/c, aq/d; q)n

(
aq

ef

)n
(13)

=
(q/c, q/d, aq/e, aq/f ; q)∞

(aq, q/a, aq/cd, aq/ef ; q)∞

×
∞∑

n=−∞

(1− aq2n)(c, d, e, f ; q)n
(1− a)(aq/c, aq/d, aq/e, aq/f ; q)n

(
a3q

cdef

)n
qn

2

,

|a2q2/cdef | < |aq/ef | < 1.
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∞∑
n=−∞

(a, c; q)n
(b, d; q)n

zn(14)

=
(b/a, d/c, az, qb/acz; q)∞

(b, q/c, z, bd/acz; q)∞

∞∑
n=−∞

(a, acz/b; q)n
(az, d; q)n

(b/a)n,

|b/a| < 1, |d/c| < 1, |bd/ac| < |z| < 1.

∞∑
n=−∞

(a, c; q)n
(b, d; q)n

zn(15)

=
(az, cz, qb/acz, qd/acz; q)∞

(b, d, q/a, q/c; q)∞

∞∑
n=−∞

(acz/b, acz/d; q)n
(az, cz; q)n

(
bd

acz

)n
,

|bd/ac| < |z| < 1.

∞∑
n=−∞

(a; q)n
(b; q)n

zn =
(q, b/a, az, q/az; q)∞
(b, q/a, z, b/az; q)∞

, |b/a| < |z| < 1.(16)

The bilateral transformations at (13), (14) and (15) are all due to Bailey [4].
The identity at (16) is Ramanujan’s sum for 1ψ1 [ ab ; q, z] (see [7, (5.2.1)]).

First, we consider a generalization, namely the series

G(c, d; z, q) = 1 +

∞∑
n=1

znq2n
2

(c, d; q2)n
,

the bilateral series of which is defined by

G∗(c, d; z, q) =

∞∑
n=−∞

znq2n
2

(c, d; q2)n
.

Proposition 3.1. For |q| < 1, we have

G∗(c, d; z, q)(17)

=
(c/z, d/z; q2)∞

(zq2, q2/z, cd/zq2; q2)∞

∞∑
n=−∞

1− zq4n

1− z
(zq2/c, zq2/d; q2)n

(c, d; q2)n
(zcd)nq4n

2−4n,

G∗(c, d; z, q)(18)

=
(c/z; q2)∞

(c, cd/zq2; q2)∞

∞∑
n=−∞

(zq2/c; q2)n
(d; q2)n

(−c)nqn
2−n,

G∗(c, d; z, q)(19)

=
(c/z, d/z; q2)∞

(c, d; q2)∞

∞∑
n=−∞

(zq2/c, zq2/d; q2)n(cd/zq2)n.
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Proof. First, replace c, d by aq/c, aq/d, respectively, and then let q → q2, e →
∞, f →∞ in (13), to get that

∞∑
n=−∞

anq2n
2

(c, d; q2)n

=
(c/a, d/a; q2)∞

(aq2, q2/a, cd/aq2; q2)∞

∞∑
n=−∞

1− aq4n

1− a
(aq2/c, aq2/d; q2)n

(c, d; q2)n
(acd)nq4n

2−4n.

The identity (17) follows after replacing a by z.
Transformations (18) and (19) will follow as special cases of two more general

identities. First by letting q → q2, z → zq2/ac, and then a → ∞, c → ∞ in
(14) and (15), respectively, to get

∞∑
n=−∞

znq2n
2

(b, d; q2)n
=

(b/z; q2)∞
(b, bd/zq2; q2)∞

∞∑
n=−∞

(zq2/b; q2)n
(d; q2)n

(−b)nqn
2−n

and

∞∑
n=−∞

znq2n
2

(b, d; q2)n
=

(b/z, d/z; q2)∞
(b, d; q2)∞

∞∑
n=−∞

(zq2/b, zq2/d; q2)n(bd/zq2)n.

After replacing b by c, we obtain our desired results (18) and (19). This com-
pletes the proof. �

Theorem 3.2. For |q| < 1, we have

ψ0(q) + 2qφ0(q) =
1

J2
1

∞∑
n=−∞

(8n+ 1)q4n
2+n,(20)

ψ1(q) + 2φ1(q) =
1

J2
1

∞∑
n=−∞

(8n+ 3)q4n
2+3n.(21)

Proof. Replacing z, c, d by z2,−zq,−zq2 in (17), respectively, we get

∞∑
n=−∞

z2nq2n
2

(−zq; q)2n

=
(−q/z,−q2/z; q2)∞
(z2q2, q2/z2, q; q2)∞

∞∑
n=−∞

1− zq2n

1− z
z4nq4n

2−n

=
(−q/z; q)∞

(z2q2, q2/z2, q; q2)∞

[
1 +

∞∑
n=1

z−4nq4n
2−n {z8n(1− zq2n) + q2n(1− zq−2n)

}
1− z

]

=
(−q/z; q)∞

(z2q2, q2/z2, q; q2)∞

[
1 +

∞∑
n=1

z−4nq4n
2−n {−z(1− z8n−1) + q2n(1− z8n+1)

}
1− z

]
.
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Letting z → 1, we obtain

∞∑
n=−∞

q2n
2

(−q; q)2n

=
(−q; q)∞

(q; q)∞(q2; q2)∞

[
1 +

∞∑
n=1

q4n
2−n (−(8n− 1) + q2n(8n+ 1)

)]

=
(−q; q)∞

(q; q)∞(q2; q2)∞

∞∑
n=−∞

(1 + 8n)q4n
2+n

=
1

J2
1

∞∑
n=−∞

(1 + 8n)q4n
2+n.

(22)

In fact, the left side of (22) can be directly written as

∞∑
n=0

q2n
2

(−q; q)2n
+

−∞∑
n=−1

q2n
2

(−q; q)2n
=

∞∑
n=0

q2n
2

(−q; q)2n
+ 2q

∞∑
n=0

qn(−q; q)2n+1

= ψ0(q) + 2qφ0(q).

Thus, the identity (20) is obtained.
For (21), first letting z → z2q2, and then replacing c, d by −zq2,−zq3 in

(17), respectively, we get

∞∑
n=−∞

z2nq2n
2+2n

(−zq2,−zq3; q2)n

=
−z3q(−1/z,−1/zq; q2)∞

(1 + z)(z2q2, q2/z2, q; q2)∞

∞∑
n=−∞

1− zq2n+1

1− z
z4nq4n

2+3n

=
−z3q(−1/z,−1/zq; q2)∞

(1 + z)(z2q2, q2/z2, q; q2)∞

×
∞∑
n=0

z4nq4n
2+3n

(
1− z−8n−3

1− z
− zq2n+1 1− z−8n−5

1− z

)
.

Letting z → 1, we obtain

∞∑
n=−∞

q2n
2+2n

(−q; q)2n+1

=
(−q,−q2; q2)∞
(q2, q2, q; q2)∞

( ∞∑
n=0

q4n
2+3n(8n+ 3)−

∞∑
n=0

q4n
2+5n+1(8n+ 5)

)

=
1

J2
1

∞∑
n=−∞

q4n
2+3n(8n+ 3).
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Since
∞∑

n=−∞

q2n
2+2n

(−q; q)2n+1
=

∞∑
n=0

q2n
2+2n

(−q; q)2n+1
+ 2

∞∑
n=0

qn(−q; q)2n = ψ1(q) + 2φ1(q),

then, we have

ψ1(q) + 2φ1(q) =
1

J2
1

∞∑
n=−∞

q4n
2+3n(8n+ 3).

This completes the proofs of (20) and (21). �

Corollary 3.3. We have
∞∑

n=−∞
(1 + 8n)q4n

2+n = J1J2

∞∑
n=−∞

(−q; q2)n
(−q2; q2)n

qn
2

= −J
2
1J3,8

J2
(J1,2 − 2J2,4),

∞∑
n=−∞

(8n+ 3)q4n
2+3n = 2J1J2

∞∑
n=−∞

(−q2; q2)n
(−q; q2)n+1

qn
2+n

=
J1,8J

2
1

J2
(J1,2 + 2J2,4).

Proof. From (18), letting c = −q, d = −q2, z = 1, we get

ψ0(q) + 2qφ0(q) =
J2
J1

∞∑
n=−∞

(−q; q2)n
(−q2; q2)n

qn
2

.

Again from (18), letting c = −q2, d = −q3, z = q2, we obtain

ψ1(q) + 2φ1(q) =
2J2
J1

∞∑
n=−∞

(−q2; q2)n
(−q; q2)n+1

qn
2+n.

Together with the previous results, Corollary 3.3 can be easily proved. �

Theorem 3.4. For |q| < 1, we have(
ψ0(q2) + 2q2φ0(q2)

)
+ q

(
ψ1(q2) + 2φ1(q2)

)
=
J1,2J

2
2

J4J1
.(23)

Proof. Rewrite the identity (16) as
∞∑

n=−∞

(a; q)2n
(b; q)2n

z2n +

∞∑
n=−∞

(a; q)2n+1

(b; q)2n+1
z2n+1 =

(q, b/a, az, q/az; q)∞
(b, q/a, z, b/az; q)∞

.

Making the substitutions a = −q, b = 0 and z =
√
q in (16), we obtain

∞∑
n=−∞

(−q; q)2nqn +
√
q

∞∑
n=−∞

(−q; q)2n+1q
n =

(q,−q3/2,−q−1/2; q)∞
(−1, q1/2; q)∞

,(24)
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i.e., ( ∞∑
n=0

(−q; q)2nqn +
1

2

∞∑
n=0

q2n
2+2n

(−q; q)2n+1

)

+
√
q

( ∞∑
n=0

(−q; q)2n+1q
n +

1

2q

∞∑
n=0

q2n
2

(−q; q)2n

)

=
(q,−q3/2,−q−1/2; q)∞

2(−q, q1/2; q)∞
.

Finally, replacing q by q2 and after some simplifications, we get our desired
result. This completes the proof. �

Combining (5), (6) with (23), we obtain the following result:

Corollary 3.5. For |q| < 1, we have

qJ2,16(J2,4 + 2J4,8)− J6,16(J2,4 − 2J4,8) =
J1,2J

2
2

J1
.(25)
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