Bull. Korean Math. Soc. **57** (2020), No. 2, pp. 345–354 https://doi.org/10.4134/BKMS.b190236 pISSN: 1015-8634 / eISSN: 2234-3016

ON FOUR NEW MOCK THETA FUNCTIONS

QIUXIA HU

ABSTRACT. In this paper, we first give some representations for four new mock theta functions defined by Andrews [1] and Bringmann, Hikami and Lovejoy [5] using divisor sums. Then, some transformation and summation formulae for these functions and corresponding bilateral series are derived as special cases of $_2\psi_2$ series

$$\sum_{n=-\infty}^{\infty} \frac{(a,c;q)_n}{(b,d;q)_n} z^n$$

and Ramanujan's sum

$$\sum_{n=-\infty}^{\infty} \frac{(a;q)_n}{(b;q)_n} z^n$$

1. Introduction

In his letter to G. H. Hardy [12], S. Ramanujan defined seventeen functions M(q), |q| < 1, which he called mock θ -functions of order three, five and seven. But Ramanujan did not explain precisely what he meant by mock theta functions. The mock theta functions are interpreted by Andrews and Hickerson [2] to mean a function f(q) defined by a q-series which converges for |q| < 1 and satisfies the following two conditions:

(0) For every root of unity ξ , there is a theta function $\theta_{\xi}(q)$ such that the difference $f(q) - \theta_{\xi}(q)$ is bounded as $q \to \xi$ radially.

(1) There is no single theta function which works for all ξ ; i.e., for every theta function $\theta(q)$ there is some root of unity ξ for which $f(q) - \theta_{\xi}(q)$ is unbounded as $q \to \xi$ radially.

G. N. Watson [13] found three third-order mock theta functions. In his "lost" Notebook Ramanujan gave six sixth-order mock theta functions which were studied by G. E. Andrews and D. Hickerson [2] and four tenth-order mock theta functions which were studied by Choi [6]. B. Gordon and R. J. McIntosh [8] generated eight eighth-order mock theta functions, but four of them were

©2020 Korean Mathematical Society

Received March 3, 2019; Revised June 18, 2019; Accepted August 5, 2019.

²⁰¹⁰ Mathematics Subject Classification. 11F03, 11B65, 11F27.

 $Key\ words\ and\ phrases.$ Mock theta functions, divisor sums, basic bilateral hypergeometric series.

later found of lower order. Hikami [9] found one more mock theta function of order two.

Andrews [1] generated new mock theta functions. Bringmann, Hikami and Lovejoy [5] developed two more mock theta functions.

Throughout this paper, we adopt the standard notations in [7]. For |q| < 1, the q-shifted factorial is defined by

$$(a;q)_0 = 1, \ (a;q)_n = \prod_{k=0}^{n-1} (1 - aq^k), \ n = 1, 2, 3, \dots, \ (a;q)_\infty = \prod_{k=0}^{\infty} (1 - aq^k).$$

It is easy to deduce from the definition of $(a;q)_n$ that, for a positive integer n,

$$(a;q)_{-n} = \frac{(-q/a)^n}{(q/a;q)_n} q^{n(n-1)/2}$$

We also adopt the following compact notation for multiple q-shifted factorials:

$$(a_1, a_2, \dots, a_m; q)_n = (a_1; q)_n (a_2; q)_n \cdots (a_m; q)_n,$$

where n is an integer or ∞ and m is a positive integer.

If $|q_1| > 1$, then it holds

$$(a;q_1)_n = \frac{(\frac{1}{a};\frac{1}{q_1})_{\infty}}{(\frac{1}{aq_1^n};\frac{1}{q_1})_{\infty}}(-a)^n q_1^{\binom{n}{2}}.$$

The bilateral basic hypergeometric series is given by

$${}_r\psi_r\left[\begin{array}{c}a_1,\ldots,a_r\\b_1,\ldots,b_r\end{array};q,z\right]=\sum_{n=-\infty}^{\infty}\frac{(a_1,\ldots,a_s;q)_n}{(b_1,\ldots,b_r;q)_n}z^n.$$

Two new mock theta functions of Andrews in [1] are defined by:

(1)
$$\overline{\psi}_0(q) = \sum_{n=0}^{\infty} \frac{q^{2n^2}}{(-q;q)_{2n}},$$

(2)
$$\overline{\psi}_1(q) = \sum_{n=0}^{\infty} \frac{q^{2n^2+2n}}{(-q;q)_{2n+1}}$$

and two new mock theta functions of Bringmann, Hikami and Lovejoy in [5] are defined by:

(3)
$$\overline{\phi}_0(q) = \sum_{\substack{n=0\\\infty}}^{\infty} q^n (-q;q)_{2n+1},$$

(4)
$$\overline{\phi}_1(q) = \sum_{n=0}^{\infty} q^n (-q;q)_{2n}.$$

Lemma 1.1 ([11, Corollary 2.9]). The following identities are true:

(5)
$$\overline{\psi}_0(q) + 2q\overline{\phi}_0(q) = -\frac{J_{3,8}}{J_2}(J_{1,2} - 2\overline{J}_{2,4}),$$

(6)
$$\overline{\psi}_1(q) + 2\overline{\phi}_1(q) = \frac{\overline{J}_{1,8}}{J_2}(J_{1,2} + 2\overline{J}_{2,4}).$$

Here, let a and m be integers with m positive. Define

$$J_{a,m} := j(q^a; q^m), \quad J_m := J_{m,3m} = \prod_{i \ge 1} (1 - q^{mi}), \quad \overline{J}_{a,m} := j(-q^a; q^m).$$

In this paper, motivated by the work of Nikos Bagis [3] on divisor sums, we first give some representations of some new mock theta functions using divisor sums. Then, motivated by the work of James Mc Laughlin [10], some transformation and summation formulae for these functions and corresponding bilateral series are derived.

2. Divisor sums and new mock theta functions

Theorem 2.1. The function $\overline{\psi}_0(q)$ is defined for all $q \in C - D$, where $D = \{z \in C : |z| = 1\}$. For |q| < 1, we have

$$\begin{aligned} (7) \qquad \overline{\psi}_{0}(q) &= \sum_{n=0}^{\infty} \frac{q^{2n^{2}}}{(-q;q)_{2n}} \\ &= \frac{1}{\chi(q)} \sum_{n=0}^{\infty} q^{2n^{2}} \exp\left[-\sum_{s=1}^{\infty} \frac{q^{s}}{s} \sum_{0 < d \mid s, d \ge 2n+1} (-1)^{s/d} d\right], \\ (8) \qquad \overline{\psi}_{0}(1/q) &= \sum_{n=0}^{\infty} \frac{q^{n}}{(-q;q)_{2n}} \\ &= \frac{1}{\chi(q)} \sum_{n=0}^{\infty} q^{n} \exp\left[-\sum_{s=1}^{\infty} \frac{q^{s}}{s} \sum_{0 < d \mid s, d \ge 2n+1} (-1)^{s/d} d\right], \\ (9) \qquad \overline{\psi}_{1}(q) &= \sum_{n=0}^{\infty} \frac{q^{2n^{2}+2n}}{(-q;q)_{2n+1}} \\ &= \frac{1}{\chi(q)} \sum_{n=0}^{\infty} q^{2n^{2}+2n} \exp\left[-\sum_{s=2}^{\infty} \frac{q^{s}}{s} \sum_{0 < d \mid s, d \ge 2n+2} (-1)^{s/d} d\right], \\ (10) \qquad \overline{\psi}_{1}(1/q) &= \sum_{n=0}^{\infty} \frac{q^{n+1}}{(-q;q)_{2n+1}} \\ &= \frac{1}{\chi(q)} \sum_{n=0}^{\infty} q^{n+1} \exp\left[-\sum_{s=2}^{\infty} \frac{q^{s}}{s} \sum_{0 < d \mid s, d \ge 2n+2} (-1)^{s/d} d\right], \\ (11) \qquad \overline{\phi}_{0}(q) &= \sum_{n=0}^{\infty} q^{n}(-q;q)_{2n+1} \end{aligned}$$

Q. X. HU

(12)
$$= \chi(q) \sum_{n=0}^{\infty} q^{n} \exp\left[\sum_{s=2}^{\infty} \frac{q^{s}}{s} \sum_{0 < d \mid s, d \ge 2n+2} (-1)^{s/d} d\right],$$
$$= \chi(q) \sum_{n=0}^{\infty} q^{n} \left(-q; q\right)_{2n}$$
$$= \chi(q) \sum_{n=0}^{\infty} q^{n} \exp\left[\sum_{s=1}^{\infty} \frac{q^{s}}{s} \sum_{0 < d \mid s, d \ge 2n+1} (-1)^{s/d} d\right],$$

where $\chi(q) = (-q;q)_{\infty}$.

Proof. We only give the proof of the identity (8) in details here. First, we have

$$(-q^{-1};q^{-1})_n = q^{-\binom{n+1}{2}}(-q;q)_n.$$

Then, by proper computations we get

$$\begin{split} \overline{\psi}_0(1/q) &= \sum_{n=0}^{\infty} \frac{q^n}{(-q;q)_{2n}} = \frac{1}{(-q;q)_{\infty}} \sum_{n=0}^{\infty} q^n (-q^{2n+1};q)_{\infty} \\ &= \frac{1}{(-q;q)_{\infty}} \sum_{n=0}^{\infty} q^n \exp\left[\log \prod_{k=1}^{\infty} (1+q^{2n+k})\right] \\ &= \frac{1}{(-q;q)_{\infty}} \sum_{n=0}^{\infty} q^n \exp\left[\sum_{k=1}^{\infty} \log(1+q^{2n+k})\right] \\ &= \frac{1}{(-q;q)_{\infty}} \sum_{n=0}^{\infty} q^n \exp\left[\sum_{k=1}^{\infty} \sum_{m=1}^{\infty} \frac{(-1)^{m+1}q^{(2n+k)m}}{m}\right]. \end{split}$$

After substitutions (2n + k)m = s, 2n + k = d, we get our desired result (8). Similarly, other identities in Theorem 2.1 can be also proved.

3. Some transformation and summation formulas associated to new mock theta functions

In this section, we will begin with transformation and summation formulas for basic bilateral hypergeometric series:

(13)
$$\sum_{n=-\infty}^{\infty} \frac{(e, f; q)_n}{(aq/c, aq/d; q)_n} \left(\frac{aq}{ef}\right)^n \\ = \frac{(q/c, q/d, aq/e, aq/f; q)_{\infty}}{(aq, q/a, aq/cd, aq/ef; q)_{\infty}} \\ \times \sum_{n=-\infty}^{\infty} \frac{(1 - aq^{2n})(c, d, e, f; q)_n}{(1 - a)(aq/c, aq/d, aq/e, aq/f; q)_n} \left(\frac{a^3q}{cdef}\right)^n q^{n^2} \\ |a^2q^2/cdef| < |aq/ef| < 1.$$

(14)
$$\sum_{n=-\infty}^{\infty} \frac{(a,c;q)_n}{(b,d;q)_n} z^n$$
$$= \frac{(b/a,d/c,az,qb/acz;q)_{\infty}}{(b,q/c,z,bd/acz;q)_{\infty}} \sum_{n=-\infty}^{\infty} \frac{(a,acz/b;q)_n}{(az,d;q)_n} (b/a)^n$$
$$|b/a| < 1, \ |d/c| < 1, \ |bd/ac| < |z| < 1.$$

(15)
$$\sum_{n=-\infty}^{\infty} \frac{(a,c;q)_n}{(b,d;q)_n} z^n = \frac{(az,cz,qb/acz,qd/acz;q)_{\infty}}{(b,d,q/a,q/c;q)_{\infty}} \sum_{n=-\infty}^{\infty} \frac{(acz/b,acz/d;q)_n}{(az,cz;q)_n} \left(\frac{bd}{acz}\right)^n, |bd/ac| < |z| < 1.$$

(16)
$$\sum_{n=-\infty}^{\infty} \frac{(a;q)_n}{(b;q)_n} z^n = \frac{(q,b/a,az,q/az;q)_{\infty}}{(b,q/a,z,b/az;q)_{\infty}}, \ |b/a| < |z| < 1.$$

The bilateral transformations at (13), (14) and (15) are all due to Bailey [4]. The identity at (16) is Ramanujan's sum for $_1\psi_1 \left[{}^a_b; q, z \right]$ (see [7, (5.2.1)]).

First, we consider a generalization, namely the series

$$G(c,d;z,q) = 1 + \sum_{n=1}^{\infty} \frac{z^n q^{2n^2}}{(c,d;q^2)_n},$$

the bilateral series of which is defined by

$$G^*(c,d;z,q) = \sum_{n=-\infty}^{\infty} \frac{z^n q^{2n^2}}{(c,d;q^2)_n}.$$

Proposition 3.1. For |q| < 1, we have

$$(17) \quad G^*(c,d;z,q) = \frac{(c/z,d/z;q^2)_{\infty}}{(zq^2,q^2/z,cd/zq^2;q^2)_{\infty}} \sum_{n=-\infty}^{\infty} \frac{1-zq^{4n}}{1-z} \frac{(zq^2/c,zq^2/d;q^2)_n}{(c,d;q^2)_n} (zcd)^n q^{4n^2-4n},$$

$$(18) \quad G^*(c,d;z,q) = \frac{(c/z;q^2)_{\infty}}{(c,cd/zq^2;q^2)_{\infty}} \sum_{n=-\infty}^{\infty} \frac{(zq^2/c;q^2)_n}{(d;q^2)_n} (-c)^n q^{n^2-n},$$

$$(19) \quad G^*(c,d;z,q) = 0$$

$$= \frac{(c/z, d/z; q^2)_{\infty}}{(c, d; q^2)_{\infty}} \sum_{n=-\infty}^{\infty} (zq^2/c, zq^2/d; q^2)_n (cd/zq^2)^n.$$

Proof. First, replace c, d by aq/c, aq/d, respectively, and then let $q \to q^2, e \to \infty, f \to \infty$ in (13), to get that

$$\sum_{n=-\infty}^{\infty} \frac{a^n q^{2n^2}}{(c,d;q^2)_n} = \frac{(c/a,d/a;q^2)_{\infty}}{(aq^2,q^2/a,cd/aq^2;q^2)_{\infty}} \sum_{n=-\infty}^{\infty} \frac{1-aq^{4n}}{1-a} \frac{(aq^2/c,aq^2/d;q^2)_n}{(c,d;q^2)_n} (acd)^n q^{4n^2-4n}.$$

The identity (17) follows after replacing a by z.

Transformations (18) and (19) will follow as special cases of two more general identities. First by letting $q \to q^2, z \to zq^2/ac$, and then $a \to \infty, c \to \infty$ in (14) and (15), respectively, to get

$$\sum_{n=-\infty}^{\infty} \frac{z^n q^{2n^2}}{(b,d;q^2)_n} = \frac{(b/z;q^2)_{\infty}}{(b,bd/zq^2;q^2)_{\infty}} \sum_{n=-\infty}^{\infty} \frac{(zq^2/b;q^2)_n}{(d;q^2)_n} (-b)^n q^{n^2-n}$$

and

$$\sum_{n=-\infty}^{\infty} \frac{z^n q^{2n^2}}{(b,d;q^2)_n} = \frac{(b/z,d/z;q^2)_{\infty}}{(b,d;q^2)_{\infty}} \sum_{n=-\infty}^{\infty} (zq^2/b,zq^2/d;q^2)_n (bd/zq^2)^n.$$

After replacing b by c, we obtain our desired results (18) and (19). This completes the proof. $\hfill \Box$

Theorem 3.2. For |q| < 1, we have

(20)
$$\overline{\psi}_0(q) + 2q\overline{\phi}_0(q) = \frac{1}{J_1^2} \sum_{n=-\infty}^{\infty} (8n+1)q^{4n^2+n},$$

(21)
$$\overline{\psi}_1(q) + 2\overline{\phi}_1(q) = \frac{1}{J_1^2} \sum_{n=-\infty}^{\infty} (8n+3)q^{4n^2+3n}.$$

Proof. Replacing z, c, d by $z^2, -zq, -zq^2$ in (17), respectively, we get

$$\begin{split} &\sum_{n=-\infty}^{\infty} \frac{z^{2n}q^{2n^2}}{(-zq;q)_{2n}} \\ &= \frac{(-q/z,-q^2/z;q^2)_{\infty}}{(z^2q^2,q^2/z^2,q;q^2)_{\infty}} \sum_{n=-\infty}^{\infty} \frac{1-zq^{2n}}{1-z} z^{4n}q^{4n^2-n} \\ &= \frac{(-q/z;q)_{\infty}}{(z^2q^2,q^2/z^2,q;q^2)_{\infty}} \left[1 + \sum_{n=1}^{\infty} \frac{z^{-4n}q^{4n^2-n} \left\{ z^{8n}(1-zq^{2n}) + q^{2n}(1-zq^{-2n}) \right\}}{1-z} \right] \\ &= \frac{(-q/z;q)_{\infty}}{(z^2q^2,q^2/z^2,q;q^2)_{\infty}} \left[1 + \sum_{n=1}^{\infty} \frac{z^{-4n}q^{4n^2-n} \left\{ -z(1-z^{8n-1}) + q^{2n}(1-z^{8n+1}) \right\}}{1-z} \right]. \end{split}$$

Letting $z \to 1$, we obtain

(22)

$$\sum_{n=-\infty}^{\infty} \frac{q^{2n^{2}}}{(-q;q)_{2n}} = \frac{(-q;q)_{\infty}}{(q;q)_{\infty}(q^{2};q^{2})_{\infty}} \left[1 + \sum_{n=1}^{\infty} q^{4n^{2}-n} \left(-(8n-1) + q^{2n}(8n+1) \right) \right] = \frac{(-q;q)_{\infty}}{(q;q)_{\infty}(q^{2};q^{2})_{\infty}} \sum_{n=-\infty}^{\infty} (1+8n)q^{4n^{2}+n} = \frac{1}{J_{1}^{2}} \sum_{n=-\infty}^{\infty} (1+8n)q^{4n^{2}+n}.$$

In fact, the left side of (22) can be directly written as

$$\sum_{n=0}^{\infty} \frac{q^{2n^2}}{(-q;q)_{2n}} + \sum_{n=-1}^{-\infty} \frac{q^{2n^2}}{(-q;q)_{2n}} = \sum_{n=0}^{\infty} \frac{q^{2n^2}}{(-q;q)_{2n}} + 2q \sum_{n=0}^{\infty} q^n (-q;q)_{2n+1}$$
$$= \overline{\psi}_0(q) + 2q\overline{\phi}_0(q).$$

Thus, the identity (20) is obtained. For (21), first letting $z \to z^2 q^2$, and then replacing c, d by $-zq^2, -zq^3$ in (17), respectively, we get

$$\begin{split} &\sum_{n=-\infty}^{\infty} \frac{z^{2n}q^{2n^2+2n}}{(-zq^2,-zq^3;q^2)_n} \\ &= \frac{-z^3q(-1/z,-1/zq;q^2)_{\infty}}{(1+z)(z^2q^2,q^2/z^2,q;q^2)_{\infty}} \sum_{n=-\infty}^{\infty} \frac{1-zq^{2n+1}}{1-z} z^{4n}q^{4n^2+3n} \\ &= \frac{-z^3q(-1/z,-1/zq;q^2)_{\infty}}{(1+z)(z^2q^2,q^2/z^2,q;q^2)_{\infty}} \\ &\qquad \times \sum_{n=0}^{\infty} z^{4n}q^{4n^2+3n} \left(\frac{1-z^{-8n-3}}{1-z} - zq^{2n+1}\frac{1-z^{-8n-5}}{1-z}\right). \end{split}$$

Letting $z \to 1$, we obtain

$$\sum_{n=-\infty}^{\infty} \frac{q^{2n^2+2n}}{(-q;q)_{2n+1}}$$

= $\frac{(-q,-q^2;q^2)_{\infty}}{(q^2,q^2,q;q^2)_{\infty}} \left(\sum_{n=0}^{\infty} q^{4n^2+3n}(8n+3) - \sum_{n=0}^{\infty} q^{4n^2+5n+1}(8n+5) \right)$
= $\frac{1}{J_1^2} \sum_{n=-\infty}^{\infty} q^{4n^2+3n}(8n+3).$

Since

$$\sum_{n=-\infty}^{\infty} \frac{q^{2n^2+2n}}{(-q;q)_{2n+1}} = \sum_{n=0}^{\infty} \frac{q^{2n^2+2n}}{(-q;q)_{2n+1}} + 2\sum_{n=0}^{\infty} q^n (-q;q)_{2n} = \overline{\psi}_1(q) + 2\overline{\phi}_1(q),$$

then, we have

$$\overline{\psi}_1(q) + 2\overline{\phi}_1(q) = \frac{1}{J_1^2} \sum_{n=-\infty}^{\infty} q^{4n^2 + 3n} (8n + 3).$$

This completes the proofs of (20) and (21).

$$\sum_{n=-\infty}^{\infty} (1+8n)q^{4n^2+n} = J_1 J_2 \sum_{n=-\infty}^{\infty} \frac{(-q;q^2)_n}{(-q^2;q^2)_n} q^{n^2}$$
$$= -\frac{J_1^2 \overline{J}_{3,8}}{J_2} (J_{1,2} - 2\overline{J}_{2,4}),$$
$$\sum_{n=-\infty}^{\infty} (8n+3)q^{4n^2+3n} = 2J_1 J_2 \sum_{n=-\infty}^{\infty} \frac{(-q^2;q^2)_n}{(-q;q^2)_{n+1}} q^{n^2+n}$$
$$= \frac{\overline{J}_{1,8} J_1^2}{J_2} (J_{1,2} + 2\overline{J}_{2,4}).$$

Proof. From (18), letting $c = -q, d = -q^2, z = 1$, we get

$$\overline{\psi}_0(q) + 2q\overline{\phi}_0(q) = \frac{J_2}{J_1} \sum_{n=-\infty}^{\infty} \frac{(-q;q^2)_n}{(-q^2;q^2)_n} q^{n^2}.$$

Again from (18), letting $c = -q^2, d = -q^3, z = q^2$, we obtain

$$\overline{\psi}_1(q) + 2\overline{\phi}_1(q) = \frac{2J_2}{J_1} \sum_{n=-\infty}^{\infty} \frac{(-q^2; q^2)_n}{(-q; q^2)_{n+1}} q^{n^2+n}.$$

Together with the previous results, Corollary 3.3 can be easily proved. **Theorem 3.4.** For |q| < 1, we have

(23)
$$(\overline{\psi}_0(q^2) + 2q^2\overline{\phi}_0(q^2)) + q\left(\overline{\psi}_1(q^2) + 2\overline{\phi}_1(q^2)\right) = \frac{\overline{J}_{1,2}J_2^2}{J_4J_1}.$$

Proof. Rewrite the identity (16) as

$$\sum_{n=-\infty}^{\infty} \frac{(a;q)_{2n}}{(b;q)_{2n}} z^{2n} + \sum_{n=-\infty}^{\infty} \frac{(a;q)_{2n+1}}{(b;q)_{2n+1}} z^{2n+1} = \frac{(q,b/a,az,q/az;q)_{\infty}}{(b,q/a,z,b/az;q)_{\infty}}$$

Making the substitutions a = -q, b = 0 and $z = \sqrt{q}$ in (16), we obtain

(24)
$$\sum_{n=-\infty}^{\infty} (-q;q)_{2n} q^n + \sqrt{q} \sum_{n=-\infty}^{\infty} (-q;q)_{2n+1} q^n = \frac{(q,-q^{3/2},-q^{-1/2};q)_{\infty}}{(-1,q^{1/2};q)_{\infty}},$$

i.e.,

$$\begin{aligned} \left(\sum_{n=0}^{\infty} (-q;q)_{2n} q^n + \frac{1}{2} \sum_{n=0}^{\infty} \frac{q^{2n^2+2n}}{(-q;q)_{2n+1}}\right) \\ + \sqrt{q} \left(\sum_{n=0}^{\infty} (-q;q)_{2n+1} q^n + \frac{1}{2q} \sum_{n=0}^{\infty} \frac{q^{2n^2}}{(-q;q)_{2n}}\right) \\ = \frac{(q,-q^{3/2},-q^{-1/2};q)_{\infty}}{2(-q,q^{1/2};q)_{\infty}}.\end{aligned}$$

Finally, replacing q by q^2 and after some simplifications, we get our desired result. This completes the proof.

Combining (5), (6) with (23), we obtain the following result:

Corollary 3.5. For |q| < 1, we have

(25)
$$q\overline{J}_{2,16}(J_{2,4}+2\overline{J}_{4,8}) - \overline{J}_{6,16}(J_{2,4}-2\overline{J}_{4,8}) = \frac{\overline{J}_{1,2}J_2^2}{J_1}$$

Acknowledgements. We would like to thank the editor and the referee for their valuable suggestions to improve the quality of this paper.

References

- G. E. Andrews, q-orthogonal polynomials, Rogers-Ramanujan identities, and mock theta functions, Proc. Steklov Inst. Math. 276 (2012), no. 1, 21–32; translated from Tr. Mat. Inst. Steklova 276 (2012), Teoriya Chisel, Algebra i Analiz, 27–38. https://doi.org/ 10.1134/S0081543812010038
- [2] G. E. Andrews and D. Hickerson, Ramanujan's "lost" notebook. VII. The sixth order mock theta functions, Adv. Math. 89 (1991), no. 1, 60–105.
- [3] N. Bagis, Properties of Lerch sums and Ramanujan's mock theta functions, arXiv:1808. 07970v3 [math.GM] 24 Sep 2018.
- W. N. Bailey, On the basic bilateral hypergeometric series 2Ψ2, Quart. J. Math., Oxford Ser. (2) 1 (1950), 194–198. https://doi.org/10.1093/qmath/1.1.194
- [5] K. Bringmann, K. Hikami, and J. Lovejoy, On the modularity of the unified WRT invariants of certain Seifert manifolds, Adv. in Appl. Math. 46 (2011), no. 1-4, 86– 93. https://doi.org/10.1016/j.aam.2009.12.004
- [6] Y.-S. Choi, Tenth order mock theta functions in Ramanujan's lost notebook, Invent. Math. 136 (1999), no. 3, 497–569.
- [7] G. Gasper and M. Rahman, *Basic hypergeometric series*, Encyclopedia of Mathematics and its Applications, 35, Cambridge University Press, Cambridge, 1990.
- [8] B. Gordon and R. J. McIntosh, Some eighth order mock theta functions, J. London Math. Soc. (2) 62 (2000), no. 2, 321–335. https://doi.org/10.1112/S0024610700008735
- K. Hikami, Transformation formula of the "second" order Mock theta function, Lett. Math. Phys. 75 (2006), no. 1, 93–98.
- [10] J. Mc Laughlin, Mock theta function identities deriving from bilateral basic hypergeometric series, in Analytic number theory, modular forms and q-hypergeometric series, 503–531, Springer Proc. Math. Stat., 221, Springer, Cham, 2017.
- E. Mortenson, On three third order mock theta functions and Hecke-type double sums, Ramanujan J. 30 (2013), no. 2, 279–308. https://doi.org/10.1007/s11139-012-9376-8

Q. X. HU

- [12] S. Ramanujan, Collected Paper, Cambridge University Press 1927, reprinted by Chelsea New York, (1962).
- [13] G. N. Watson, The Mock Theta Functions (2), Proc. London Math. Soc. (2) 42 (1936), no. 4, 274–304. https://doi.org/10.1112/plms/s2-42.1.274

QIUXIA HU DEPARTMENT OF MATHEMATICS SHANGHAI NORMAL UNIVERSITY SHANGHAI 200234, P. R. CHINA *Email address*: huqiuxia306@163.com