• Title/Summary/Keyword: distribution temperature sensing

Search Result 177, Processing Time 0.026 seconds

Fabrication of the Microchannel Integrated with the Inner Sensors for Accurate Measuring Fluid Temperature (유체의 정확한 온도 측정을 위하여 내부 센서를 집적한 마이크로채널 제작)

  • Park, Ho-Jun;Im, Geun-Bae;Son, Sang-Yeong;Song, In-Seop;Park, Jeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.9
    • /
    • pp.449-454
    • /
    • 2002
  • A rectangular straight microchannel, integrated with the resistance temperature detectors(RTDs) for temperature sensing and a micro-heater for generating the Temperature gradient along the channel, was fabricated. Its dimension is 57${\mu}{\textrm}{m}$(H)$\times$200${\mu}{\textrm}{m}$(W)$\times$48,050${\mu}{\textrm}{m}$(L), and RTDs were placed at the inner-channel wall. Si wafer was used as a substrate. For the fabrication of RTDs, 5300$\AA$ thick Pt/Ti layer was sputtered on a Pyrex glass wafer. Finally, the glass wafer was bonded with Si wafer by anodic bonding, so that the RTDs are located inside the microchannel. Temperature coefficient of resistance(TCR) values of the fabricated Pt-RTDs were 2800~2950ppm$^{\circ}C$ and the variation of TCR value In the range of O~10$0^{\circ}C$ was less than 0.3%. Therefore, it was proved that the fabricated Pt-RTDs without annealing were excellent as temperature sensors. The temperature distribution in the microchannel was investigated as a function of mass flow rate and heating power. The temperature increase rate diminished with decreasing the applied power and increasing the mass flow rate. It was confirmed from the comparison with the simulation results that the temperature measured inside the microchannel is more accurate than measuring the temperature measured at the outer wall. The proposed temperature sensing method and microchannel are expected to be useful in microfluidics researches.

Design of Super-junction TMOSFET with Embedded Temperature Sensor

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.232-236
    • /
    • 2015
  • Super-junction trench MOSFET (SJ TMOSFET) devices are well known for lower specific on-resistance and high breakdown voltage (BV). For a conventional power MOSFET (metal-oxide semiconductor field-effect transistor) such as trench double-diffused MOSFET (TDMOSFET), there is a tradeoff relationship between specific on-state resistance and breakdown voltage. In order to overcome the tradeoff relationship, a SJ TMOSFET structure is suggested, but sensing the temperature distribution of TMOSFET is very important in the application since heat is generated in the junction area affecting TMOSFET. In this paper, analyzing the temperature characteristics for different number bonding for SJ TMOSFET with an embedded temperature sensor is carried out after designing the diode temperature sensor at the surface of SJ TMOSFET for the class of 100 V and 100 A for a BLDC motor.

High-Performance Multimodal Flexible Tactile Sensor Capable of Measuring Pressure and Temperature Simultaneously (압력과 온도측정 기능을 갖는 고성능 플렉시블 촉각센서)

  • Jang, Jin-Seok;Kang, Tae-Hyung;Song, Han-Wook;Park, Yon-Kyu;Kim, Min-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.8
    • /
    • pp.683-688
    • /
    • 2014
  • This paper presents a high-performance flexible tactile sensor based on inorganic silicon flexible electronics. We created 100 nm-thick semiconducting silicon ribbons equally distributed with 1 mm spacing and $8{\times}8$ arrays to sense the pressure distribution with high-sensitivity and repeatability. The organic silicon rubber substrate was used as a spring material to achieve both of mechanical flexibility and robustness. A thin copper layer was deposited and patterned on top of the pressure sensing layer to create a flexible temperature sensing layer. The fabricated tactile sensor was tested through a series of experiments. The results showed that the tactile sensor is capable of measuring pressure and temperature simultaneously and independently with high precision.

Modeling of Surface Temperature Characteristics on the Ground by using the Measured Weather Condition Data (측정된 기상 조건 데이터를 이용한 지상물체의 표면온도 특성 연구)

  • Choi, Jun-Hyuk;Park, Tae-Won;Kim, Tae-Kuk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.470-477
    • /
    • 2010
  • This paper is a part of developing a program that predicts the surface temperature and the IR images of ground objects by considering solar irradiation and atmospheric convection. The thermal modeling is essential for identifying objects on the scenes obtained from the remote sensing. And the temperature distribution on the objects is necessary to obtain their infrared images in contrast to the background. We considered the composite heat transfer modes including conduction, convection and spectral solar radiation incident on the objects within a scene to calculate the surface temperature distribution. The surface temperatures obtained by using the S/W developed in this study(Silhouette) and a commercial S/W(SE-Workbench-IR) are computed and compared each other. Results obtained by using the S/W developed in this study(Silhouette) show fairly good agreement with those obtained by the SE-Workbench-IR.

Derivation of Geostationary Satellite Based Background Temperature and Its Validation with Ground Observation and Geographic Information (정지궤도 기상위성 기반의 지표면 배경온도장 구축 및 지상관측과 지리정보를 활용한 정확도 분석)

  • Choi, Dae Sung;Kim, Jae Hwan;Park, Hyungmin
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.6
    • /
    • pp.583-598
    • /
    • 2015
  • This paper presents derivation of background temperature from geostationary satellite and its validation based on ground measurements and Geographic Information System (GIS) for future use in weather and surface heat variability. This study only focuses on daily and monthly brightness temperature in 2012. From the analysis of COMS Meteorological Data Processing System (CMDPS) data, we have found an error in cloud distribution of model, which used as a background temperature field, and in examining the spatial homogeneity. Excessive cloudy pixels were reconstructed by statistical reanalysis based on consistency of temperature measurement. The derived Brightness temperature has correlation of 0.95, bias of 0.66 K and RMSE of 4.88 K with ground station measurements. The relation between brightness temperature and both elevation and vegetated land cover were highly anti-correlated during warm season and daytime, but marginally correlated during cold season and nighttime. This result suggests that time varying emissivity data is required to derive land surface temperature.

Estimation of Daily Maximum/Minimum Temperature Distribution over the Korean Peninsula by Using Spatial Statistical Technique (공간통계기법을 이용한 전국 일 최고/최저기온 공간변이의 추정)

  • 신만용;윤일진;서애숙
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.1
    • /
    • pp.9-20
    • /
    • 1999
  • The use of climatic information is essential in the industial society. More specialized weather servies are required to perform better industrial acivities including agriculture. Especially, crop models require daily weather data of crop growing area or cropping zones, where routine weather observations are rare. Estimates of the spatial distribution of daily climates might complement the low density of standard weather observation stations. This study was conducted to estimate the spatial distribution of daily minimum and maximum temperatures in Korean Peninsula. A topoclimatological technique was first applied to produce reasonable estimates of monthly climatic normals based on 1km $\times$ 1km grid cell over study area. Harmonic analysis method was then adopted to convert the monthly climatic normals into daily climatic normals. The daily temperatures for each grid cell were derived from a spatial interpolation procedure based on inverse-distance weighting of the observed deviation from the climatic normals at the nearest 4 standard weather stations. Data collected from more than 300 automatic weather systems were then used to validate the final estimates on several dates in 1997. Final step to confirm accuracy of the estimated temperature fields was comparing the distribution pattern with the brightness temperature fields derived from NOAA/AVHRR. Results show that differences between the estimated and the observed temperatures at 20 randomly selected automatic weather systems(AWS) range from -3.$0^{\circ}C$ to + 2.5$^{\circ}C$ in daily maximum, and from -1.8$^{\circ}C$ to + 2.2$^{\circ}C$ in daily minimum temperature. The estimation errors, RMSE, calculated from the data collected at about 300 AWS range from $1.5^{\circ}C$ to 2.5$^{\circ}C$ for daily maximum/minimum temperatures.

A Study on Application of Remote Sensing for Thermal Plume Analysis (온배수 확산분석을 위한 Remote Sensing 활용에 관한 연구)

  • Yeu, Bock-Mo;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.1 no.2 s.2
    • /
    • pp.185-194
    • /
    • 1993
  • In this research, the image obtained by TM platformed in the LANDSAT-5 and the terrestrial infrared image obtained by the Thermo Tracer were employed in order to search the distribution of industrial thermal plume discharged into seas. Sea surface temperature distributions were deduced based on the infrared band 6 in the TM image of the LANDSAT by employing the transformal formula provided by the CSFC of the NASA and post-calibration values. The temperature distributions were also obtained with the processing mode of the TH1100 series from the terrestrial thermal image or the Thermo tracer. According to the results of the image analyses with this methods, it was found that sea surface temperatures in shallow coastal area largely affected by the temperatures of the freshwater and inland and that the range and the area of distribution of the thermal plume can be visualized quantitatively. Furthermore, when the terrestrial thermal infrared scanner is used, the more details of the distribution range can be obtained, and the image results are comparable to those obtained from the LNADSTA.

  • PDF

A Study on Geothermal Characteristics of Dam Body and Seepage Flow (댐 제체 및 침투수 흐름의 지열학적 고찰)

  • Park, Dong-Soon;Jung, Woo-Sung;Kim, Hyoung-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.75-85
    • /
    • 2006
  • In recent geotechnical engineering, geothermal approach has been on the horizon to deal with geoenvironmental issues, freezing and thawing problems, and seepage phenomenon in dams and embankments. In this study, geothermal characteristic through inner body of dams and its influence on the seepage flow were experimented by lab test and field instrumentation. Also, one of up-to-date temperature monitoring technique, called as multi-channel thermal line sensing, was evaluated its availability. As a result of lab test, it is found that the seepage flow has influence on the geothermal characteristic and a potential of finding phreatic line and seepage fluctuation could be possible by continuous temperature monitoring using thermal line sensing skills. These kine of geothermal information could be available to the modelling of water geo-structure interaction. Out of short-term field tests, clear water table and temperature distribution of a dam were easily found through temperature monitoring in holes located near a reservoir and holes within a depth of constant temperature layer. However, it is also found that the geothermal flow and finding seepage line could not be easily understandable through multi-channel temperature monitoring because of the existence of constant temperature field, thermal conductivity of soils and rocks, and unsaturated characteristics of geo-material. In this case, long-term geothermal monitoring is recommended to find sudden fluctuation of seepage line and amount of leakage.

  • PDF

Analysis of Temperature Change by Forest Growth for Mitigation of the Urban Heat Island (도시열섬 완화를 위한 녹지증가에 따른 온도변화 분석)

  • Yun, Hee Cheon;Kim, Min Gyu;Jung, Kap Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.2
    • /
    • pp.143-150
    • /
    • 2013
  • Recently, environmental issues such as climate warming, ozone layer depletion, reduction of tropical forests and desertification are emerging as global environmental problems beyond national problems. And international attention and effort have been carried out in many ways to solve these problems. In this study, the growth of green was calculated quantitatively using the technique of remote sensing and temperature change was figured out through temperature extraction in the city. The land-cover changes and thermal changes for research areas were analyzed using Landsat TM images on May 2002 and May 2009. Surface temperature distribution was calculated using spectral degree of brightness of Band 6 that was Landsat TM thermal infrared sensor to extract the ground surface temperature in the city. As a result of research, the area of urban green belt was increased by $2.87km^2$ and the ground surface temperature decreased by $0.6^{\circ}C{\sim}0.8^{\circ}C$ before and after tree planting projects. Henceforth, if the additional study about temperature of downtown is performed based on remote sensing and measurement data, it will contribute to solve the problems about the urban environment.

Electrical Properties of Temperature Coefficient of Resistance and Heat Radiation Structure Design for Shunt Fixed Resistor (저항 온도계수와 방열 구조설계에 따른 션트 고정 저항의 전기적 특성)

  • Kim, Eun Min;Kim, Hyeon Chang;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.2
    • /
    • pp.107-111
    • /
    • 2018
  • In this study, we designed the temperature coefficient of resistance (TCR) and heat radiation properties of shunt fixed resistors by adjusting the atomic composition of a metal alloy resistor, and fabricated a resistor that satisfied the designed properties. Resistors with similar atomic composition of copper and nickel showed low TCR and excellent shunt fixed resistor properties such as short-time overload, rated load, humidity load, and high temperature load. Finally, we expect that improved sensor accuracy will be obtained in current-distribution-type shunt fixed resistor for IoT sensors by designing the atomic composition of the metal alloy resistor proposed in this work.