DOI QR코드

DOI QR Code

Derivation of Geostationary Satellite Based Background Temperature and Its Validation with Ground Observation and Geographic Information

정지궤도 기상위성 기반의 지표면 배경온도장 구축 및 지상관측과 지리정보를 활용한 정확도 분석

  • Choi, Dae Sung (Department of Atmospheric Science, Pusan National University) ;
  • Kim, Jae Hwan (Department of Atmospheric Science, Pusan National University) ;
  • Park, Hyungmin (Department of Atmospheric Science, Pusan National University)
  • Received : 2015.12.08
  • Accepted : 2015.12.22
  • Published : 2015.12.31

Abstract

This paper presents derivation of background temperature from geostationary satellite and its validation based on ground measurements and Geographic Information System (GIS) for future use in weather and surface heat variability. This study only focuses on daily and monthly brightness temperature in 2012. From the analysis of COMS Meteorological Data Processing System (CMDPS) data, we have found an error in cloud distribution of model, which used as a background temperature field, and in examining the spatial homogeneity. Excessive cloudy pixels were reconstructed by statistical reanalysis based on consistency of temperature measurement. The derived Brightness temperature has correlation of 0.95, bias of 0.66 K and RMSE of 4.88 K with ground station measurements. The relation between brightness temperature and both elevation and vegetated land cover were highly anti-correlated during warm season and daytime, but marginally correlated during cold season and nighttime. This result suggests that time varying emissivity data is required to derive land surface temperature.

본 연구에서는 천리안위성 기반의 지표면 열적 특성 감시 및 기상현상 탐지에 이용할 수 있는 배경 온도장을 산출하고 지상관측자료 및 지리정보와 비교하여 정확도를 검증하였다. 배경온도장은 밝기온도를 선택하였으며 2012년 자료를 이용하여 월별로 매 시간대에 대해 산출되었다. 밝기온도 자료에서 청천화소와 구름화소를 구별하기 위해 천리안 구름탐지를 사용하였고, 천리안 구름탐지의 입력자료로 사용된 수치모델자료와 공간 균질성 검사 부분에서 구름 오탐지현상을 발견하였다. 과다하게 구름으로 오탐지된 화소는 통계적인 방법에 기반한 구름화소 복원을 통해 해결하였다. 산출된 밝기온도 배경장은 지상관측 기온과 0.95의 상관관계를 보였으며 0.66 K의 편향과 4.88 K의 평균 제곱근 오차를 보였다. 밝기온도 배경장과 고도는 시간대와 계절에 따라 변동성을 보이는 음의 상관관계를 보였다. 녹지와의 상관관계는 기온이 높은 계절 및 주간에 높게 나타났으며, 상관관계의 시간에 따른 변화가 관측되었다. 이러한 이유로 지표면온도 산출 시 시간에 따른 방출률을 별도로 구성해야 할 필요성이 제기되었다.

Keywords

References

  1. Aduah, M.S., S. Mantey, and N.D. Tagoe, 2012. Mapping land surface temperature and land cover to detect urban heat island effect: a case study of Tarkwa, South West Ghana, Research Journal of Environmental and Earth Sciences, 4(1): 68-75.
  2. Baek, J.-J. and M.-H. Choi, 2012. Availability of Land Surface Temperature from the COMS in the Korea Peninsula, Journal of Korea Water Resources Association, 45(8): 755-765 (in Korean with English abstract). https://doi.org/10.3741/JKWRA.2012.45.8.755
  3. Bastiaanssen, W.G.M., M. Menenti, R.A. Feddes, and A.A.M. Holtslag, 1998. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation, Journal of hydrology, 212(213): 198-212.
  4. Carlson, T.N. and S.T. Arthur, 2000. The impact of land use-land cover changes due to urbanization on surface microclimate and hydrology: a satellite perspective, Global and Planetary Change, 25(1): 49-65. https://doi.org/10.1016/S0921-8181(00)00021-7
  5. Channan, S.K., K. Collins, and W.R. Emanuel, 2014. Global mosaics of the standard MODIS land cover type data, University of Maryland and the Pacific Northwest National Laboratory, College Park, Maryland, USA.
  6. Chase, T.N., R.A. Pielke Sr, T.G.F. Kittel, R.R. Nemani, and S.W. Running, 2000. Simulated impacts of historical land cover changes on global climate in northern winter, Climate Dynamics, 16(2-3): 93-105. https://doi.org/10.1007/s003820050007
  7. Chen, X.-L., H.-M. Zhao, P.-X. Li, and Z.-Y. Yin, 2006. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes, Remote sensing of environment, 104(2): 133-146. https://doi.org/10.1016/j.rse.2005.11.016
  8. Cho, A.-R. and M.-S. Suh, 2013. Evaluation of Land Surface Temperature Operationally Retrieved from Korean Geostationary Satellite (COMS) Data, Remote Sensing, 5(8): 3951-3970. https://doi.org/10.3390/rs5083951
  9. Choi, Y.-Y., M.-S. Suh, and K.-H. Park, 2014. Assessment of surface urban heat islands over three megacities in East Asia using land surface temperature data retrieved from COMS, Remote Sensing, 6(6): 5852-5867. https://doi.org/10.3390/rs6065852
  10. Chung, C.Y., H.K. Lee, H.J. Ahn, M.H. Ahn, and S.N. Oh, 2006. Developing the Cloud Detection Algorithm for COMS Meteorolgical Data Processing System, Korean Journal of Remote Sensing, 22(5): 367-372. https://doi.org/10.7780/kjrs.2006.22.5.367
  11. Eidenshink, J.C. and J.L. Faundeen, 1994. The 1 km AVHRR global land data set: first stages in implementation, International Journal of Remote Sensing, 15(17): 3443-3462. https://doi.org/10.1080/01431169408954339
  12. Feng, X. and H. Shi, 2011. Pattern of urban heat island in Xi'an by remote sensing image, Proc. of 2011 International Symposium on Water Resource and Environmental Protection (ISWREP), vol. 3, pp. 2399-2401.
  13. Friedl, M.A., D. Sulla-Menashe, B. Tan, A. Schneider, N. Ramankutty, A. Sibley, and X. Huang, 2010. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets, Remote Sensing of Environment, 114(1): 168-182. https://doi.org/10.1016/j.rse.2009.08.016
  14. Gao, X., A.R. Huete, W. Ni, and T. Miura, 2000. Optical-Biophysical Relationships of Vegetation Spectra without Background Contamination, Remote Sensing of Environment, 74(3): 609-620. https://doi.org/10.1016/S0034-4257(00)00150-4
  15. Goward, S.N., S. Turner, D.G. Dye, and S. Liang, 1994. The University of Maryland improved global vegetation index product, International Journal of Remote Sensing, 15(17): 3365-3395. https://doi.org/10.1080/01431169408954336
  16. Han, H., N. Guo, D. Cai, and J. Wang, 2011. FY-2D retrieved surface temperature change as a predictor for sandstorm forecasting over Northwest China, Proc. of Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, Canada, jul. 24-29, pp. 3261-3264.
  17. Harries, J.E., J.E. Russell, J.A. Hanafin, H. Brindley, J. Futyan, J. Rufus, and M.A. Ringer, 2005. The Geostationary Earth Radiation Budget Project, Bulletin of the American Meteorological Society, 86(7): 945-960. https://doi.org/10.1175/BAMS-86-7-945
  18. Holben, B.N., 1986. Characteristics of maximum-value composite images from temporal AVHRR data, International Journal of Remote Sensing, 7(11): 1417-1434. https://doi.org/10.1080/01431168608948945
  19. Hong, K.-O., M.-S. Suh, and J.-H. Kang, 2009. Development of a Land Surface Temperature-Retrieval Algorithm from MTSAT-1R Data, Asia-Pacific Journal of Atmospheric Sciences, 45(4): 411-421.
  20. Hong, S.J., J.H. Kim, and J.S. Ha, 2010. Possibility of Applying Infrared Background Threshold Values for Detecting Asian dust in Spring from Geostationary Satellite, Korean Journal of Remote Sensing, 26(4): 387-394 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2010.26.4.387
  21. Huete, A., C. Justice, and Leeuwen, W. van, 1999. MODIS VEGETATION INDEX(MOD 13), ALGORITHM THEORETICAL BASIS DOCUMENT, 3: 213.
  22. Kalnay, E. and M. Cai, 2003. Impact of urbanization and land-use change on climate, Nature, 423(6939): 528-531. https://doi.org/10.1038/nature01675
  23. Kaufman, Y.J., D. Tanré, L.A. Remer, E.F. Vermote, A. Chu, and B.N. Holben, 1997. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer, Journal of Geophysical Research: Atmospheres, 102(D14): 17051-17067. https://doi.org/10.1029/96JD03988
  24. Kim, H.-O., J.-M. Yeom, and Y.-S. Kim, 2011. The multi-temporal characteristics of spectral vegetation indices for agricultural land use on RapidEye satellite imagery, Aerospace Engineering and Technology, 10(1): 149-155 (in Korean with English abstract).
  25. Liang, X., D.P. Lettenmaier, E.F. Wood, and S.J. Burges, 1994. A simple hydrologically based model of land surface water and energy fluxes for general circulation models, JOURNAL OF GEOPHYSICAL RESEARCH-ALL SERIES-, 99(D7): 14415-14428. https://doi.org/10.1029/94JD00483
  26. Liu, H. qing and A. Huete, 1995. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise, IEEE Transactions on Geoscience and Remote Sensing, 33(2): 457-465. https://doi.org/10.1109/36.377946
  27. KMA, 2009. Development of Meteorological Data Processing System for Communication, Ocean and Meteorological Satellite. KMA (in Korean with English abstract).
  28. Neteler, M., 2010. Estimating Daily Land Surface Temperatures in Mountainous Environments by Reconstructed MODIS LST Data, Remote Sensing, 2(1): 333-351. https://doi.org/10.3390/rs1020333
  29. Owe, M., R. de Jeu, and T. Holmes, 2008. Multisensor historical climatology of satellite-derived global land surface moisture, Journal of Geophysical Research: Earth Surface, 113(F1): F01002.
  30. Park, J., J.H. Kim, and S.J. Hong, 2012. Detection of Yellow Sand Dust over Northeast Asia using Background Brightness Temperature Difference of Infrared Channels from MODIS, Atmosphere, 22(2): 137-147 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2012.22.2.137
  31. Park, K.-H. and S.-K. Jung, 1999. Analysis on Urban Heat Island Effects for the Metropolitan Green Space Planning, Journal of the Korean Association of Geographic Information Studies, 2(3): 35-45 (in Korean with English abstract).
  32. Sellers, P.J., C.J. Tucker, G.J. Collatz, S.O. Los, C.O. Justice, D.A. Dazlich, and D.A. Randall, 1996. A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part II: The Generation of Global Fields of Terrestrial Biophysical Parameters from Satellite Data, Journal of Climate, 9(4): 706-737. https://doi.org/10.1175/1520-0442(1996)009<0706:ARLSPF>2.0.CO;2
  33. Shin, D., H. Park, and J.H. Kim, 2013. Analysis of the Fog Detection Algorithm of DCD Method with SST and CALIPSO Data, Atmosphere, 23(4): 471-483 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2013.23.4.471
  34. Streutker, D.R., 2003. Satellite-measured growth of the urban heat island of Houston, Texas, Remote Sensing of Environment, 85(3): 282-289. https://doi.org/10.1016/S0034-4257(03)00007-5
  35. Su, Z., 2002. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes, Hydrology and Earth System Sciences Discussions, 6(1): 85-100. https://doi.org/10.5194/hess-6-85-2002
  36. Tachikawa, T., M. Kaku, A. Iwasaki, D.B. Gesch, M.J. Oimoen, Z. Zhang, and C. Carabajal, 2011. ASTER global digital elevation model version 2-summary of validation results. NASA.
  37. Tran, H., D. Uchihama, S. Ochi, and Y. Yasuoka, 2006. Assessment with satellite data of the urban heat island effects in Asian mega cities, International Journal of Applied Earth Observation and Geoinformation, 8(1): 34-48. https://doi.org/10.1016/j.jag.2005.05.003
  38. Wan, Z., P. Wang, and X. Li, 2004. Using MODIS land surface temperature and normalized difference vegetation index products for monitoring drought in the southern Great Plains, USA, International Journal of Remote Sensing, 25(1): 61-72. https://doi.org/10.1080/0143116031000115328
  39. Weng, Q., 2003. Fractal analysis of satellite-detected urban heat island effect, Photogrammetric engineering & remote sensing, 69(5): 555-566. https://doi.org/10.14358/PERS.69.5.555
  40. Wilson, M.F. and A. Henderson-Sellers, 1985. A global archive of land cover and soils data for use in general circulation climate models, Journal of CLIMATOL, 5(2): 119-143. https://doi.org/10.1002/joc.3370050202
  41. Yuan, F. and M.E. Bauer, 2007. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery, Remote Sensing of Environment, 106(3): 375-386. https://doi.org/10.1016/j.rse.2006.09.003
  42. Yun, H.C., M.G. Kim, and K.Y. Jung, 2013. Analysis of Temperature Change By Forest Growth for Mitigation of the Urban Heat Island, Journal of Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 31(2): 143-150 (in Korean with English abstract). https://doi.org/10.7848/ksgpc.2013.31.2.143
  43. Zhou, L., R.E. Dickinson, Y. Tian, J. Fang, Q. Li, R.K. Kaufmann, and R.B. Myneni, 2004. Evidence for a significant urbanization effect on climate in China, Proc. of the National Academy of Sciences of the United States of America, 101(26): 9540-9544.

Cited by

  1. 다중선형회귀모형에 의한 지표면 광대역 방출율 산출 vol.38, pp.4, 2015, https://doi.org/10.5467/jkess.2017.38.4.269