• Title/Summary/Keyword: discrete systems

Search Result 1,856, Processing Time 0.026 seconds

Effects of Fracture Tensor Component and First Invariant on Block Hydraulic Characteristics of the 2-D Discrete Fracture Network Systems (절리텐서의 성분 및 일차불변량이 2-D DFN 시스템의 블록수리전도 특성에 미치는 영향)

  • Um, Jeong-Gi
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.81-90
    • /
    • 2019
  • In this study, the effects of fracture tensor component and first invariant on block hydraulic behaviors are evaluated in the 2-D DFN(discrete fracture network) systems. A series of regression analysis is performed between connected fracture tensor components and block hydraulic conductivities estimated at every $30^{\circ}$ hydraulic gradient directions for a total of 36 DFN systems having various joint density and size distribution. The directional block hydraulic conductivity seems to have strong relation with the fracture tensor component estimated in direction perpendicular to it. It is found that an equivalent continuum approach could be acceptable for the 2-D DFN systems under condition that the first invariant of fracture tensor is more than 2.0~2.5. The first invariant of fracture tensor seems highly correlated with average block hydraulic conductivity and can be used to evaluate hydraulic characteristics of the 2-D DFN systems. Also, a possibility of upscaling using the first invariant of fracture tensor for the DFN system is addressed through this study.

Robust tuning of quadratic criterion-based iterative learning control for linear batch system

  • Kim, Won-Cheol;Lee, Kwang-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.303-306
    • /
    • 1996
  • We propose a robust tuning method of the quadratic criterion based iterative learning control(Q-ILC) algorithm for discrete-time linear batch system. First, we establish the frequency domain representation for batch systems. Next, a robust convergence condition is derived in the frequency domain. Based on this condition, we propose to optimize the weighting matrices such that the upper bound of the robustness measure is minimized. Through numerical simulation, it is shown that the designed learning filter restores robustness under significant model uncertainty.

  • PDF

Robust Reliable $H^{\infty}$ Control of Continuous/Discrete Uncertain Time Delay Systems: LMI Approach (LMI를 이용한 연속/이산 불확실성 시간지연 시스템의 견실 신뢰 $H^{\infty}$제어)

  • 김종해;박홍배
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.401-404
    • /
    • 1998
  • In this paper, we present robust reliable $H\infty$ controller design methods of continuous and discrete uncertain time delay systems through LMI(linear matrix inequality) approach, respectively. Also the existence conditions of state feedback control are proposed. Using some changes of varables and Schur complements, the obtained sufficient conditions are transformed into LMI form. We show the validity of the proposed method through numerical examples.

  • PDF

A Modal Identification of Self-Adjoint Distributed Parameter Systems Using Spatial Filter (공간함수 필터를 이용한 자기수반계의 모달판정)

  • 강수준
    • Journal of KSNVE
    • /
    • v.4 no.1
    • /
    • pp.51-57
    • /
    • 1994
  • The objective of this research is to introduce a method of modal identification for self-adjoint distributed parameter systems using Spatial Fiter. To minimize the spillover effects which come from using the finite discrete sensors by means of discrete measurements, a new mechanism, namely spatial filter which is main subject in this research, is introduced for extracting modal coordinates from sensors' output. As an illustration of the proposed method, two simple numerical examples are also examined.

  • PDF

Variable structure control of chaotic systems

  • Choi, Changkyu;Lee, Ju-Jang;Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.505-510
    • /
    • 1994
  • To prevent the stable states from the complex dynamics, the global behavior of the overall system must be considered. Thus, indirect adaptive scheme might result in needless responses. Discrete-time variable structure controllers for a well-known logistic map are designed for two deferent sliding hyperplanes. Impulse disturbances are fully rejected by tile virtue of discrete-time variable structure control(DVSC). A numerical example is given to illustrate the effectless of the DVSC.

  • PDF

Stable discrete-time adaptive control for periodic systems

  • Ishitobi, Mitsuaki;Iwai, Zental
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10a
    • /
    • pp.717-720
    • /
    • 1987
  • This paper presents a discrete-time model reference adaptive control technique for periodically time-varying plants. It is shown that the identification problem for periodic parameters can be reduced to that of constant unknown parameters case. The global stability of the resulting closed-loop system is established using the key technical lemma of Goodwin, Ramadge and Caines.

  • PDF

Robust FIR filter for Linear Discrete-time System

  • Quan, Zhong-Hua;Han, Soo-Hee;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2548-2551
    • /
    • 2005
  • In this paper, a robust receding horizon finite impulse response(FIR) filter is proposed for a class of linear discrete time systems with uncertainty satisfying an integral quadratic constraint. The robust state estimation problem involves constructing the set of all possible states at the current time consistent with given system input, output measurements and the integral quadratic constraint.

  • PDF

An Analytical Design Of A Feedback Regulator With Vector Input In A Discrete Linear Time Invariant Systems (벡터 인력을 갖는 이산선형시 불변시스템의 피이드백 조정기의 해석적 설계)

  • 고명삼;양해원
    • 전기의세계
    • /
    • v.23 no.1
    • /
    • pp.69-72
    • /
    • 1974
  • This paper deals with an analytical design of a feedback regulator with vector input is discrete linear time-invariant systems. We have derived some relations such that the eigenvalues of a system plant with vector input under the time-optimal control strategy can be arbitrarily changed by the characteristics of the minor loop compensator which is indroduced in the feedback path.

  • PDF

Block-decomposition of a Linear Discrete Large-scale systems Via the Matrix Sign Function (행렬부호 함수에 의한 선형 이산치 대단위 계토의 블럭-분해)

  • 천희영;박귀태;권성하;이창훈
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.11
    • /
    • pp.511-518
    • /
    • 1986
  • An algorithm for block-decomposition of a linear, time-invariant, discrete large-scale systems is presented, based upon the matrix sign function on Z-plane. The block-decomposition is performed by defining a reference circle, a circular stripe and projection operators. Simulation study shows that the presented algorithm is very useful for multivariable control system's analysis and design.

  • PDF

Stabilizing Supervisory Controller Design for Discrete Event Dynamic Systems (이산사건 동적 시스템의 안정화 관리 제어기의 설계)

  • Cha, D.K.;Lim, J.
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.310-313
    • /
    • 1993
  • A design of stabilizing supervisory controller for discrete event dynamic systems(DEDS) is investigated in this paper. The notion of system stability is introduced for the supervisory control and the stable behavior is defined. A framework of stabilizing supervisory controller, which controls a given system to have stable behavior. is formulated and a design method is proposed for the stabilizing, supervisory controller.

  • PDF