• Title/Summary/Keyword: discrete model

Search Result 2,034, Processing Time 0.032 seconds

Eigenvalue Sensitivity Analysis of Discrete Power Systems Including Generator Controllers and TCSC (발전기 제어장치와 TCSC를 포함하는 이산 전력시스템의 고유치 감도해석)

  • Kim, Deok-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.193-200
    • /
    • 2010
  • In this paper, the eigenvalue sensitivity analysis is calculated in the power system which is including both generator controllers such as Exciter, PSS and thyristor controlled FACTS devices in transmission lines such as TCSC. Exciter and PSS are continuously operating controllers but TCSC has a switching device which operates non-continuously. To analyze both continuous and non-continuous operating equipments, the RCF method one of the numerical analysis method in discrete time domain is applied using discrete models of the power system. Also the eigenvalue sensitivity calculation algorithm using state transition equations in discrete time domain is devised and applied to a sampled system. As a result of simulation, the eigenvalue sensitivity coefficients calculated using discrete system models in discrete time domain are changed periodically and showed different values compared to those of continuous system model in time domain by the effect of periodic switching operations of TCSC.

Modeling and Simulation of Flexible Control Structures for Automated Manufacturing Systems (자동화된 생산 시스템의 유연한 제어 구조의 모델링과 시뮬레이션)

  • Hwang, Hee-Soo;Kim, Hyun-Ki;Woo, Kwang-Bang
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.439-443
    • /
    • 1987
  • This paper presents a method for constructing model of manufacturing processes for simulation and design of the discrete control logic. The models represent the discrete vent evolution of the system as well as features of the underlying continues processes, for applications such as discrete parts manufacture and assembly, the process is decomposed into operations and for each operation the required resources and associated discrete resource slates are Identified. The structure of the discrete-level control is modeled by modified Perti nets which are synthesized from single resource activity cycles. Construction of nets provides discrete control logic with guaranteed properties based on extended Petri nets theory, for illustration, the proposed method is applied to the high-level discrete control of a two-robotic assembly cell.

  • PDF

POSTERIOR COMPUTATION OF SURVIVAL MODEL WITH DISCRETE APPROXIMATION

  • Lee, Jae-Yong;Kwon, Yong-Chan
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.2
    • /
    • pp.321-333
    • /
    • 2007
  • In the proportional hazard model with the beta process prior, the posterior computation with the discrete approximation is considered. The time period of interest is partitioned by small intervals. On each partitioning interval, the likelihood is approximated by that of a binomial experiment and the beta process prior is by a beta distribution. Consequently, the posterior is approximated by that of many independent binomial model with beta priors. The analysis of the leukemia remission data is given as an example. It is illustrated that the length of the partitioning interval affects the posterior and one needs to be careful in choosing it.

GENERATING SAMPLE PATHS AND THEIR CONVERGENCE OF THE GEOMETRIC FRACTIONAL BROWNIAN MOTION

  • Choe, Hi Jun;Chu, Jeong Ho;Kim, Jongeun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.1241-1261
    • /
    • 2018
  • We derive discrete time model of the geometric fractional Brownian motion. It provides numerical pricing scheme of financial derivatives when the market is driven by geometric fractional Brownian motion. With the convergence analysis, we guarantee the convergence of Monte Carlo simulations. The strong convergence rate of our scheme has order H which is Hurst parameter. To obtain our model we need to convert Wick product term of stochastic differential equation into Wick free discrete equation through Malliavin calculus but ours does not include Malliavin derivative term. Finally, we include several numerical experiments for the option pricing.

On the structure of a discrete-time $H_{\infty}$ two-degrees-of-freedom controller (이산시간 $H_{\infty}$ 2-자유도 제어기의 구조에 관한 연구)

  • 최병욱
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.569-572
    • /
    • 1996
  • Explicit state-space formulate for an H$_{.inf}$ based two-degrees-of-freedom robust controller are derived in discrete-time. The controller provides robust stability against coprime factor uncertainty, and a degree of robust performance in the sense of making the closed-loop system match a prespecified reference model. It is shown that the controller consists of a plant observer, the chosen reference model, and a generalized state feedback law associated with the plant and model states. The controller structure is shown to be relatively simple and thus may reduce the computational load on the digital control processor.

  • PDF

ADAPTIVE CHANDRASEKHAR FILLTER FOR LINEAR DISCRETE-TIME STATIONALY STOCHASTIC SYSTEMS

  • Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.1041-1044
    • /
    • 1988
  • This paper considers the design problem of adaptive filters based an the state-space models for linear discrete-time stationary stochastic signal processes. The adaptive state estimator consists of both the predictor and the sequential prediction error estimator. The discrete Chandrasakhar filter developed by author is employed as the predictor and the nonlinear least-squares estimator is used as the sequential prediction error estimator. Two models are presented for calculating the parameter sensitivity functions in the adaptive filter. One is the exact model called the linear innovations model and the other is the simplified model obtained by neglecting the sensitivities of the Chandrasekhar X and Y functions with respect to the unknown parameters in the exact model.

  • PDF

A New Consideration for Discrete-System Reduction via Impulse Response Gramian

  • Younseok Choo;Park, Jaeho
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.384-389
    • /
    • 2004
  • Recently a method of model reduction for discrete systems has been proposed in the literature based on a new impulse response Gramian. In this method, the system matrix$A_r$ of a reduced model is computed by approximating the reduced-order impulse response Gramian. The remaining matrices $b_r$ and $c_r$ are obtained so that various initial Markov parameters and time-moments of the original system are preserved in the reduced model. In this paper a different approach is presented based on the recursive relationship among the impulse response Gramians.

Implementation of the submarine diving simulation in a distributed environment

  • Ha, Sol;Cha, Ju-Hwan;Roh, Myung-Il;Lee, Kyu-Yeul
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.211-227
    • /
    • 2012
  • To implement a combined discrete event and discrete time simulation such as submarine diving simulation in a distributed environment, e.g., in the High Level Architecture (HLA)/Run-Time Infrastructure (RTI), a HLA interface, which can easily connect combined models with the HLA/RTI, was developed in this study. To verify the function and performance of the HLA interface, it was applied to the submarine dive scenario in a distributed environment, and the distributed simulation shows the same results as the stand-alone simulation. Finally, by adding a visualization model to the simulation and by editing this model, we can confirm that the HLA interface can provide user-friendly functions such as adding new model and editing a model.

Lattice discrete particle modeling of compressive failure in hollow concrete blocks

  • Javidan, Fatemeh;Shahbeyk, Sharif;Safarnejad, Mohammad
    • Computers and Concrete
    • /
    • v.13 no.4
    • /
    • pp.437-456
    • /
    • 2014
  • This work incorporates newly introduced Lattice Discrete Particle Model (LDPM) to assess the failure mechanism and strength of hollow concrete blocks. Alongside, a method for the graphical representation of cracked surfaces in the LDPM is outlined. A slightly modified calibration procedure is also suggested and used to estimate required model parameters for a tested concrete sample. Next, the model is verified for a compressively loaded hollow block made of the very same concrete. Finally, four geometries commonly used in the production of hollow concrete blocks are selected, numerically simulated, and their failure properties are explored under concentric and eccentric compressions.

Analysis of Real-time Error for Geo/D/1/1 Model (Geo/D/1/1 모형에서의 실시간 원격 추정값의 오차 분석)

  • Yutae, Lee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.27 no.1
    • /
    • pp.135-138
    • /
    • 2023
  • In this paper, we study real-time error in the context of monitoring a binary information source through a delay system. To derive the average real-time error, we model the delay system as a discrete time Geo/D/1/1 queueing model. Using a discrete time three-dimensional Markov chain with finite state space, we analyze the queueing model. We also perform some numerical analysis on various system parameters: state transition probabilities of binary information source; transmission times; and transmission frequencies. When the state changes of the information source are positively correlated and negatively correlated, we investigate the relationship between transmission time and transmission frequency.