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A New Consideration for Discrete-System Reduction
via Impulse Response Gramian

Younseok Choo and Jaeho Choi

Abstract: Recently a method of model reduction for discrete systems has been proposed in the
literature based on a new impulse response Gramian. In this method, the system matrix 4, of a
reduced model is computed by approximating the reduced-order impuise response Gramian.
The remaining matrices b, and ¢, are obtained so that various initial Markov parameters and
time-moments of the original system are preserved in the reduced model. In this paper a
different approach is presented based on the recursive relationship among the impulse response

Gramians.

Keywords: Impulse response gramian, discrete-system, model reduction, Lyapunov equation.

1. INTRODUCTON

A method of model reduction based on the impulse
response Gramian (IRG) was first suggested by
Sreeram and Agathoklis for linear continuous [1] and
discrete [2] systems. In [1], a reduced model was
obtained by matching the reduced-order IRG and
some initial Markov parameters of the original
continuous system, whereas the method of [2]
preserves the states corresponding to the dominant
eigenvalues of the discrete IRG in the reduced model.
In [3], the approach of [1] was applied to the
reciprocal system of the original system to determine
the reduced model retaining the reduced-order Gram
matrix and some initial time-moments. In [4], it was
shown that more general reduced models can be
obtained using the methods of [1,3]. The reduced
models obtained in [5] for discrete systems possess
the same properties as those of [1] for continuous
systems, It was also shown that reduced models
obtained in [5] are related by similarity transforms to
those derived by the well-known g-cover method [6].

Recently a new discrete IRG was introduced in [7]

and applied to the model reduction of discrete systems.
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In [7], the system matrix 4, of a reduced model is
obtained by approximating the reduced-order IRG.
The remaining matrices b, and ¢, are determined so
that the reduced model matches certain initial Markov
parameters and time-moments of the original system.

A different approach is presented in this paper
based on the recursive relationship among the IRGs.
It is shown that the system matrix can also be
obtained from the recursive relationship. Then the
result is applied to the model reduction problem. The
reduced model derived also approximates the reduced-
order IRG, and matches various initial Markov
parameters and time-moments of the original model as
in [7]). However the method used in this paper leads to
a different reduced model from that of [7].

This paper is organized as follows. In Section 2, the
IRG introduced in [7] and its applications to model
reduction are briefly reviewed. The main results of
this paper are contained in Section 3, and two
numerical examples are presented in Section 4. Finally,
the paper is concluded in Section 5.

2. BRIEF REVIEW OF EXISTING RESULT

2.1. Discrete impulse response Gramian

Consider an nth-order stable single-input, single-
output linear time-invariant discrete system described
by the minimal state-space realization (4,b,c¢) with
the impulse response h(k) = cA* b . For the system,
the nth-order IRG introduced in [7] is defined by

3} 13 (k) by (k2)hq+1 *
hg (k)h k h k
Wq,n =Z q( ):q+1( ) q+:l( )

hq (k)hq+n—l (k)
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where —(n—-1)<¢ <0 and

By (R)=hy(k+1) = hy(k), 120 )
B (k) == hy(m), 1<0 (3)
m=k

with A (k) =h(k) . The (n+1)th-order IRG W,
is defined similarly.

For each g, the nth-order IRG W, , is the unique

positive definite solution to the Lyapunov equation [7]

AT - AT A
AW, A=W, =—Cgy, &)

e q.n

where the realization (1:1,13 ¢,) is obtained from

q b
(4,b,¢) by the similarity transformation as

n el Pl oA
A=CAC,, by =Cb, c,=cC, &)
C,=la-1)7 -1yl @
and takes the following form
(1 0 0 -d, |
11 ~G, 4
A=[0 1 o | (7)
D ~a,
LO * 0 1 1—'&1_
~ T
qu[O - 01 0 - 0] , (8)
éq =|:t_q h tl ’;ll ”;’lq_l_n]. (9)

In (8), b, has only 1 in the (1-g)th position. In (9),
q

t; =c(A—1,)""b denotes the ith time-moment of the
system and

i-1 .
= (A1) b= Z(—l)’(’ ; I}W—j . (10)
j=0

where m; =cA"'b is the ith Markov parameter of
the system.

Since A—1, is in controllability canonical form
[8], the a;s in (7) constitute the coefficients of the
characteristic polynomial for A-1 . - Consequently,

the characteristic polynomial of the system can be
determined once the a;s are obtained. It was shown

in [7] that the (nt+l)th-order IRG W, ,,; contains

information on the characteristic polynomial of the

system in the following sense: Partition W, ,,, as

Wq,n wq,n+l
Wq,n+1 = T (1 1)
wq,n+1 Wq,n+l

then the ;s in (7) can be computed by
A=W w0, (12)

where a=[a, a

2.2. Model reduction
Based on the above results, Azou et al. [7] derived
the rth-order reduced models such that, for each ¢, the

reduced model approximates the rth-order IRG W, ,

and retains various initial Markov parameters and
time-moments of the original model. Let

(Zq,gq,Eq) be the rth-order realization with the
structure given in (7), (8) and (9). The coefficients
{a;}1<i<, for Zq are computed from the (r+1)th

order IRG W, .., asin(12): Let

w w
q,r q,r+1
Wq,r+1 = T (13)
Warsl W+l
then
~ -1
a= —Wq’rwq’r+1 . (14)
where a=[a, @ a)" b, and ¢
r r—1 1l - q q
consist of the first » elements of 5q and éq,
respectively.
The structure of (Zq,bq,Eq indicates that the

reduced model obtained for each g retains the first -g
time-moments and the first (r+g) Markov parameters of
the original model. On the other hand, the original rth-
order IRG W, , solves the following equation [7]

5T ~ ~T~
AgWy, Ay =W, =—c4 ¢4 —80,, (15)

where S0 is the rxr matrix with all entries equal
to zero except the (,7)th position. Hence the original
rth-order IRG W, . is approximately preserved in

the reduced model.
3. MAIN RESULTS

It was illustrated in [7] that the a;s in (7) can be
obtained from the (n+1)th-order IRG by (12). Using
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the result, the system matrix of a reduced model was
determined by (14). In this section a different
approach is presented based on the recursive
relationship among the IRGs.
Theorem 1: Let 4= A -1I,.

have

Then, for each ¢, we

=ATw, 4. (16)

W, +i,n q,n

q

Proof: Premultiplying AT and postmultiplying
A on both sides of (4) lead to

ATATw, ,Ad-A"W, , d=-A"¢]e,4.(17)

First we show that ¢ qZ =Cyyq - From (9),

qA = t_q tl 7’;11 7’;\1q+n]A
= t—q—l tl my - mq+n —an]
(18)
~ n ~ ~ 1T .
where a:[an a,q al] . Since (4-1,)

and A—1I , have the same characteristic equations,
we have

eI, —(A-1,)|=2" +&z"" +++d, 1z +d,.

(19)
Then, by the Cayley-Hamilton theorem, we obtain

c(A-1)7""b ~4e(4-1)1"p -

~a,c(A—1,)7b.

" (20)

From the definitions of ¢; s and m;s, the last element
in (18) is given by

>

[eta-1, - c(a-1,)m""a
= —4,c(A—1)1b—~aec(4-1,)7""b 21)

= o(A—1,)7*"D.

Since the last term in (21) equals m,,,,;, we have

éqZ = Cg41 > and (17) becomes
/’iTZTWq,nZ/i—ZTWq,nZ=_55+léq+l. (22)

Then (16) easily follows from the fact that, for each ¢,

W, is the unique solution to the Lyapunov equation

given in (4). O

The recursive relationship given in (16) provides an
efficient way of computing IRGs. Once W_,_;y, is
computed by solving (4), then W, , , for each
—(n—-2)<q <0, can be obtained by (16) without

solving (4). Conversely, a formulation different from
(12) can be derived from (16) for the computation of

a;s in (7). For ease of presentation, let w;; denote

the (i;)th element of the (n+1)th-order IRG W ,,;,
and let

Wik Wekel 0 Wi
NI AIE Wk,:k+l Wk+:1,k+l Wil (23)
Wi Wity 0 Wi
Then  we  have Won =Wqnall,nl and
Wq+1,n =Wgq,n+l [2”1 + 1]

Theorem 2: The ;s in (7) are computed by

n+1 [2 n+ 1]‘
’ q,n+1 [1’ n]l

A1 = —Wq—:rlz+1 [29 n](wl,n—lén + W2 n-1 )’ (25)

(24)

where
an—lz[&n—l Apg &1]
_ T
Wl,n—l_[WIZ W3 Wln] ,
T
Won-1 =|:W2,n+l W3 n+1 Wn,n+1] .

Proof: From (16), we obtain » equations as
follows:

Wl,n—ldn + I/Vq,n+l[2’”]ﬁn—l TWy 1 = 0, (26)
322 +wl a4 —wl 3 =0.(27

W1y + W18, 1@y =W 5 18y 1 = Wyyg g1 = 0.(27)
Since Wq a1l2,n+1] is  positive  definite,

anr1[2 n] exists and (25) follows from (26).

Substituting (25) into (27), we obtain the quadratic
equation of the form

dya2 +d, =0, (28)
where
d = Wiy =W Wy [2mIW
 Paaltin] 29)
) |Wq,n+1[2,n]|
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1
d2 = wgn lW n+l[2 n]w2,n—l ~ Wptln+l
Pymalzn+1]| (30)
l q7n+][2’n]’

Then (24) follows from the fact the a4;s are all

positive since the given system is stable. O
Now, for each ¢= —( - 1),---,0 , the rth-order

reduced realization (A ) with the structure

a-0¢¢
given in (7)-(9) can be obtained as follows: The
coefficients {gi}lgig for Zq are computed from

the (r+1)th order IRG W, ,,; by

’Wq,r+l[27r+ 1]'
|Wq,r+l[19r]|

€2y

-1 =
A= —Wq,r+l[2= r](wl,r—lar + w2,r~1)’ (32)
where
= = = =7
A= [ar~1 Ay 0 q ] ’
_ T
Wi = [le w3 o W1r] >
T
Wor-1 Z[WZ,rH W3 ra1 Wr,r+1] ,
bq and Eq consist of the first » elements of bq and
¢ q» Yespectively.

The rth-order reduced model obtained above
preserves the first —g time-moments and the first

(r + q) Markov parameters of the original model as
in [7]. On the other hand, it can be shown that the

original rth-order IRG W, . satisfies
=5 ~ =73 ~
AgWo, Ay =Wy, =—C4cq —0,, (33)
where
0 0 «a
~ 0 0
Qy=lg 0 .. :
a 0 0
with a=wl,r+1 +5rw” +Er_1W12 +"‘+§1W1r.

Hence the rth-order reduced model approximates the
original rth-order IRG.

4. EXAMPLES

In this section two numerical examples are

presented to illustrate the method chosen for this paper.

The reduced models obtained by the proposed method

are compared to those of [7] and the well-known
bilinear Routh approximation method [9] in terms of
time and frequency responses.

Example 1: Consider the fifth-order system
described by the transfer function

z* Z1.06162° +0.754522 +0.0015z — 0.0349

2% -0.3z% —0.872> +0.30722 +0.0822 - 0.022
(34)

H(z)=

which is to be approximated by the second-order
system. The method used in this paper leads to the

reduced models {H, ,(z),q=-1,0} given by

z—-0.052
Hy 1(2)=— , (35)
z°+0.1027z - 0.8195
z—0.466
Hyo(2) = . (36)

22 +0.2956z — 0.602

Second-order reduced models {FI 2,4 (2),q =-1,0}
derived by the method of [ 7] are respectively given by

~ z—0.1481

Hy_1(2)=— , (37)
z° +0.0687z —-0.8142

~ z—0.755

Hyo(2)= . (38)

2% +0.0066z — 0.871

Alternatively, the bilinear approximation method [9]
yields

A 0.5611z -0.2842
Ay(2)= . EE)
1.3132z° —1.9586z + 0.7281

As noted earlier, H,_;(z) and }72,_1(2) preserve
the first time-moment and the first Markov parameter
of the original system, while approximating the
second-order IRG, W_, in (3). Similarly, H,,(2)

and H 2,0(z) exactly match the first two Markov
parameters of the original system, and approximately
H,(z) in(39)is
guaranteed to be stable but fits the first two time-
moments only.

Table 1 compares the approximation performance
of five reduced models in terms of the time responses.

H,o(z) derived by the method of [7] is the best

reduced model for the impulse response error, while
H,_;(z) obtained by the approach of this paper

retain the second-order IRG, W, ,.

shows the best approximation performance for the
unit-step response error.

In Fig. 1, the frequency responses of H,_;(z),



388

H 2,0(z) and H 5{(z) are compared with that of the
original system. Since H, _;(z) preserves the first
time-moment and the first Markov parameter, the
frequency response of H; _;(z) is close to that of
the original system at both low and high frequencies.
The reduced model H 2,0(z) demonstrates a better

H2,—1 (Z) at hlgh
frequencies since more Markov parameters are
retained in I‘NIZ’O(Z). The reduced model H 2(2)

obtained by the bilinear Routh approximation method
is very accurate at low frequencies, but possesses
completely  different characteristics at  high
frequencies.

Example 2: For the six-order system represented
by the transfer function

frequency response than

HG) 109962 —0.98752% ~1.077723 + 0.985222 + 028862 — 02285
20— 425 + 6.645:% ~ 586325 +2.900822 - 076487 + 0.0842
(40)

we compute the third-order reduced model. For this
example, the methods of [7] and this paper give rise to
very similar results. Hence only the proposed method
will be compared with the bilinear approximation
method of [9]. The following three third-order
reduced models are obtained by the proposed method:

1.09962° +1.56982 + 0.5897

H; ,(z)= , (41)
2T 3 167422 +0.9412—0.1771
1.09962% +1.5599z + 0.5696
H3’_1(Z) = 3 2 5 (42)
23 —1.6834z% +0.9552z —0.1827
1.09962% +1.5441z + 0.5446
23 —1.69772% +0.97882 —0.1934
The method of [9] yields
. 6.1079z2 —10.1343z + 4.3915
H;(z)=

1.2543z% —3.200722 +2.7507z - 0.7942
(44)

In Table 2, the ISE of impulse and unit-step responses
are compared for four reduced models. Among them,
H;_;(z) shows the best approximation performance in
time responses. Fig. 2 compares the frequency responses
of Hs_5(z) and H;(z) with that of the original
system. It can be seen that the frequency response of
H; _,(z) almost coincides with that of the original

system while H 3(z) fails to reproduce the original
frequency response.

Younseok Choo and Jaeho Choi

Table 1. Comparison of integral-squared-error (ISE).

Reduced ISE of impulse | ISE of unit-
model response step response
Hy _1(2) 1.5244 0.8554
Hjo(2) 0.9507 ©
H,_(z) 1.2825 1.0844
Hy(2) 0.7302 oo
H,(2) 7.2533 1.9176

AMPLITUDE

5

0

¥ - e - e
N
o 0.5 1

ORIGINAL

MODEL (35)
MODEL (38)
MODEL (39)

1.5 2
W (RAD)

2.5 3 3.5

Fig. 1. Comparison of frequency responses.

Table 2. Comparison of integral-squared-error (ISE).

Reduced ISE of impulse | ISE of unit-

Model response step response
H; _,(z) 0.0014 0.0140
Hj(2) 0.0015 0.0185
Hj4(2) 0.0021 0
H,(2) 32.6749 120.4323

AMPLITUDE

ORIGINAL
MODEL (41)
MODEL (44)

"
¢ 0.5

1 1.5 2

W (RAD)

Fig. 2. Comparison of frequency responses.
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5. CONCLUSIONS

In this paper an alternative approach was presented
for a recently proposed method of model reduction for
discrete systems. A recursive relationship among the
IRGs was established. It was shown that the
transformed system matrix of the original system can
be obtained from the recursive relationship. The result
was applied to the model reduction problem.
Numerical examples indicate that mixed use of the
methods of [7] and this paper may raise the possibility
of obtaining superior reduced models.
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