Browse > Article
http://dx.doi.org/10.12989/cac.2014.13.4.437

Lattice discrete particle modeling of compressive failure in hollow concrete blocks  

Javidan, Fatemeh (Faculty of Civil and Environmental Engineering, Tarbiat Modares University)
Shahbeyk, Sharif (Faculty of Civil and Environmental Engineering, Tarbiat Modares University)
Safarnejad, Mohammad (Faculty of Civil and Environmental Engineering, Tarbiat Modares University)
Publication Information
Computers and Concrete / v.13, no.4, 2014 , pp. 437-456 More about this Journal
Abstract
This work incorporates newly introduced Lattice Discrete Particle Model (LDPM) to assess the failure mechanism and strength of hollow concrete blocks. Alongside, a method for the graphical representation of cracked surfaces in the LDPM is outlined. A slightly modified calibration procedure is also suggested and used to estimate required model parameters for a tested concrete sample. Next, the model is verified for a compressively loaded hollow block made of the very same concrete. Finally, four geometries commonly used in the production of hollow concrete blocks are selected, numerically simulated, and their failure properties are explored under concentric and eccentric compressions.
Keywords
concrete block; failure; lattice discrete particle model; graphical representation; calibration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alnaggar, M. and Cusatis, G. (2012), "Automatic parameter identification of discrete mesoscale models with application to the coarse-grained simulation of reinforced concrete structures", 20th Analysis and Computation Specialty Conference, 406-417.
2 Alnaggar, M., Cusatis, G. and Di Luzio, G. (2013), "Lattice discrete particle modeling (LDPM) of alkalisilica- reaction (ASR) deterioration of concrete structures", Cem. Concr. Comp., 41, 45-59.   DOI   ScienceOn
3 Andolfato, R.P., Camacho, J.S. and Ramalho, M.A. (2007), "Brazilian results on structural masonry concrete blocks", ACI Mater. J., 104(1), 33-39.
4 Barbosa, C.S. (2004), "Resistencia e deformabilidade de blocosvazados de concreto e suascorrelacoes com as propriedades mecanicas do material constituinte", M.Sc. Thesis, Universidade de Sao Paulo, Sao Paulo, Brazil.
5 Barbosa, C.S. and Hanai, J.B. (2009), "Strength and deformability of hollow concrete blocks: correlation of block and cylindrical sample test results", IBRACON Struct. Mater. J., 2(1), 85-99.
6 Barbosa, C.S., Lourenco, P.B. and Hanai, J.B. (2010), "On the compressive strength prediction for concrete masonry prisms", Mater. Struct., 43(3), 331-344.   DOI
7 Carol, I. and Bazant, Z.P. (1997), "Damage and plasticity in microplane theory", Int. J. Solids Struct., 34(29), 3807-3835.   DOI   ScienceOn
8 CEB-FIP Model Code 1990 (1993), Comite Euro-International du Beton, Thomas Telford Services Ltd.
9 Cusatis, G., Bazant, Z.P. and Cedolin, L. (2003), "Confinement-shear lattice model for concrete damage in tension and compression: I. Theory", ASCE J. Eng. Mech., 129(12), 1439-1448.   DOI   ScienceOn
10 Cusatis, G., Bazant, Z.P. and Cedolin, L. (2006), "Confinement-shear lattice CSL model for fracture propagation in concrete", Comput. Meth. Appl. Mech. Eng., 195(52), 7154-7171.   DOI   ScienceOn
11 Cusatis, G., Mencarelli, A., Pelessone, D. and Baylot, J.T. (2011a), "Lattice Discrete Particle Model (LDPM) for failure behavior of concrete. II: Calibration and validation", Cem. Concr. Comp., 33(9), 891-905.   DOI
12 Cusatis, G., Pelessone, D. and Mencarelli, A. (2011b), "Lattice Discrete Particle Model (LDPM) for failure behavior of concrete. I: Theory", Cem. Concr. Comp., 33(9), 881-890.   DOI
13 Drysdale, R.G., El-Dakhakhni, W.W. and Kolodziejski, E.A. (2005), "Shear capacity for flange-web intersection of concrete block shear walls", ASCE J. Struct. Eng., 134(6), 947-960.
14 Ganesan, T. and Ramamurthy, K. (1992), "Behavior of concrete hollow-block masonry prisms under axial compression", ASCE J. Struct. Eng., 118(7), 1751-1762.   DOI
15 Lu, M. and Schultz, A.E. (2011), "Influence of cavity dimension on the stability of eccentrically loaded slender unreinforced masonry hollow walls", Constr. Build. Mater., 25(12), 4444-4453.   DOI
16 Green, S.I. and Swanson, S.R. (1973), "Static constitutive relations for concrete", Rep. No. AFWL-TR-72-2, Air Force Weapons Lab., Kirtland Air Force Base, Albuquerque, NM, USA.
17 Grimm, C.T. and Tucker, R.L. (1985), "Flexural strength of masonry prisms versus wall panels", ASCE J. Struct. Eng., 111(9), 2021-2032.   DOI
18 Hamid, A.A. and Chukwunenye, A.O. (1986), "Compression behavior of concrete masonry prisms", ASCE J. Struct. Eng., 112(3), 605-613.   DOI   ScienceOn
19 Jaafar, M.S., Thanoon, W.A., Najm, A.M.S., Abdulkadir, M.R. and Abang-Ali, A.A. (2006), "Strength correlation between individual block, prism and basic wall panel for load bearing interlocking mortarless hollow block masonry", Constr. Build. Mater., 20(7), 492-498.   DOI
20 Lourenco, P.B. and Pina-Henriques, J.L. (2006), "Validation of analytical and continuum numerical methods for estimating the compressive strength of masonry", Comp. Struct., 84(29-30), 1977-1989.   DOI   ScienceOn
21 Maurenbrecher, A.H.P. (1985), "Axial compression tests on masonry walls and prisms", Proceedings of the Third North American Masonry Conference, Arlington, June.
22 Maurenbrecher, A.H.P. (1986), "Compressive strength of hollow concrete blockwork", Proceedings of the Fourth Canadian Masonry Symposium, New Brunswick, Canada, June.
23 Pina-Henriques, J.L. and Lourenco, P.B. (2006), "Masonry compression: A numerical investigation at the meso-level", Eng. Comput., 23(4), 382-407.   DOI
24 Mencarelli, A. (2007), "The lattice discrete particle model (LDPM) for concrete: Calibration and validation under quasi-static loading conditions", M.Sc. Thesis, Rensselaer Polytechnic Institute, New York.
25 Mencarelli, A. (2010), "Numerical simulation of the effect of blast and penetration on reinforced concrete structures", Ph.D. Dissertation, Rensselaer Polytechnic Institute, New York, USA.
26 Page, A.W. and Shrive, N.G. (1990), "Concentrated loads on hollow concrete masonry", ACI Struct. J., 87(4), 436-444.
27 Ramamurthy, K., Sathish, V. and Ambalavanan, R. (2000), "Compressive strength prediction of hollow concrete block masonry prisms", ACI Struct. J., 97(1), 61-67.
28 Sayed-Ahmed, E.Y. and Shrive, N.G. (1996), "Nonlinear finite element model of hollow masonry", ASCE J. Struct. Eng., 122(6), 683-689.   DOI   ScienceOn
29 Schauffert, E., Cusatis, G., Pelessone, D., O'Daniel, J. and Baylot, J. (2012), "Lattice discrete particle model for fiber-reinforced concrete. II: Tensile fracture and multiaxial loading behavior", ASCE J. Eng. Mech., 138(7), 834-841.   DOI
30 Schauffert, E.A. and Cusatis, G. (2012), "Lattice discrete particle model for fiber reinforced concrete (LDPM-F): I Theory", ASCE J. Eng. Mech., 138(7), 826-833.   DOI
31 Smith, J., Cusatis, G., Pelessone, D., O'Daniel, J. and Baylot, J. (2012), "Calibration and validation of the lattice discrete particle model for ultra high- performance fiber-reinforced concrete", 20th Analysis and Computation Specialty Conference, pp. 394-405.
32 Yi, J. and Shrive, N.G. (2003), "Behaviour of partially grouted hollow concrete masonry subjected to concentrated loads", Can. J. Civil Eng., 30(1), 191-202.   DOI
33 Thanoon, W.A., Alwathaf, A.H., Noorzaei, J., Jaafar, M.S. and Abdulkadir, M.R. (2008b), "Nonlinear finite element analysis of grouted and ungrouted hollow interlocking mortarless block masonry system", Eng. Struct., 30(6), 1560-1572.   DOI
34 Thanoon, W.A., Jaffar, M.S., Abdulkadir, M.R., Abang-Ali, A.A., Trikha, D.N. and Najm, A.M.S. (2004), "Development of an innovative interlocking load bearing hollow block system in Malaysia", Constr. Build. Mater., 18(6), 445-454.   DOI
35 Wu, C. and Hao, H. (2008), "Numerical derivation of averaged material properties of hollow concrete block masonry", Eng. Struct., 30(3), 870-883.   DOI
36 Del Coz Diaz, J.J., Nieto, P.J.G., Rabanal, F.P.A. and Martinez-Luengas, A.L. (2011), "Design and shape optimization of a new type of hollow concrete masonry block using the finite element method", Eng. Struct., 33(1), 1-9.   DOI
37 Koksal, H.O., Karakoc, C. and Yildirim, H. (2005), "Compression behavior and failure mechanisms of concrete masonry prisms", ASCE J. Mater. Civil Eng., 17(1), 107-115.   DOI   ScienceOn
38 Thanoon, W.A., Alwathaf, A.H., Noorzaei, J., Jaafar, M.S. and Abdulkadir, M.R. (2008a), "Finite element analysis of interlocking mortarless hollow block masonry prism", Comput. Struct., 86(6), 520-528.   DOI