• Title/Summary/Keyword: discovery and justification

Search Result 13, Processing Time 0.024 seconds

Mathematical Discovery and Justification through Modeling Activity in Spreadsheet Environment (스프레드시트 환경에서 모델링 활동을 통한 수학적 발견과 정당화)

  • Son, Hong-Chan;Lew, Hee-Chan
    • School Mathematics
    • /
    • v.7 no.4
    • /
    • pp.427-444
    • /
    • 2005
  • The Purpose of this study is to explore he mathematical discovery and justification of six 10th grade students through mathematical modeling activities in spreadsheet environments. The students investigated problem situations with a spreadsheet, which seem to be difficult to solve in paper and pencil environment. In spreadsheet environments, it is easy for students to form a data table and graph by inputting and copying spreadsheet formulas, and to make change specific variable by making a scroll bar. In this study those functions of spreadsheet play an important role in discovery and justification of mathematical rules which underlie in the problem situations. In modeling activities, the students could solve the problem situations and find the mathematical rules by using those functions of spreadsheets. They used two types of trial and error strategies to find the rules. The first type was to insert rows between two adjacent rows and the second was to make scroll bars connecting specific variable and change the variable by moving he scroll bars. The spreadsheet environments also help students to justify their findings deductively and convince them that their findings are true by checking various cases of the Problem situations.

  • PDF

A Study on the Recognition and Characteristics of Mathematical Justification for Gifted Students in Middle School Mathematics (중학교 수학 영재아의 수학적 정당화에 대한 인식과 특성에 관한 연구)

  • Hong, Yong-Suk;Son, Hong-Chan
    • Journal of the Korean School Mathematics Society
    • /
    • v.24 no.3
    • /
    • pp.261-282
    • /
    • 2021
  • This study identified the meaning of mathematical justification and its characteristics for middle school math gifted students. 17 middle school math gifted students participated in questionnaires and written exams. Results show that the gifted students recognized justification in various meanings such as proof, systematization, discovery, intellectual challenge of mathematical justification, and the preference for deductive justification. As a result of justification exams, there was a difference in algebra and geometry. While there were many deductive justifications in both algebra and geometry questionnaires, the difference exists in empirical justifications: there were many empirical justifications in algebra, but there were few in geometry questions. When deductive justification was completed, the students showed satisfaction with their own justification. However, they showed dissatisfaction when they could not deductively justify the generality of the proposition using mathematical symbols. From the results of the study, it was found that justification education that can improve algebraic translation ability is necessary so that gifted students can realize the limitations and usefulness of empirical reasoning and make deductive justification.

The National of Proof and the Improvement of Proof Education - In the Perspective on the Philosophy of Mathematics - (증명의 수리철학적 분석과 지도 방향 탐색)

  • 나귀수
    • Journal of Educational Research in Mathematics
    • /
    • v.8 no.1
    • /
    • pp.351-364
    • /
    • 1998
  • This thesis analyzes the nature of proof in the perspective on the philosophy of mathematics. such as absolutism, quasi-empiricism and social constructivism. And this thesis searches for the improvement of teaching proof in the light of the result of those analyses of the nature of proof. Though the analyses of the nature of proof in the perspective on the philosophy of mathematics, it is revealed that proof is a dynamic reasoning process unifying the way of analytical thought and the way of synthetical thought, and plays remarkably important roles such as justification, discovery and conviction. Hence we should teach proof as a dynamic reasoning process unifying the way of analytic thought and the way of synthetic thought, avoiding the mistake of dealing with proof as a unilaterally synthetic method. At the same time, we should make students have the needs of proof in a natural way by providing them with the contexts of both justification and discovery simultaneously. Finally, we should introduce the aspect of proof that can be represented as conviction, understanding, explanation and communication to school mathematics.

  • PDF

A study on mathematical justification activities in elementary school (초등학생의 수학적 정당화에 관한 연구)

  • 권성룡
    • Education of Primary School Mathematics
    • /
    • v.7 no.2
    • /
    • pp.85-99
    • /
    • 2003
  • In this paper, firstly examined various proofs types that cover informal empirical justifications by Balacheff, Miyazaki, and Harel & Sowder and Tall. Using these theoretical frameworks, justification activities by 5th graders were analyzed and several conclusions were drawn as follow: 1) Children in 5th grade could justify using various proofs types and method ranged from external proofs schemes by Harel & Sowder to thought experiment by Balacheff This implies that children in elementary school can justify various mathematical statements of ideas for themselves. To improve children's proving abilities, rich experience for justifying should be provided. 2) Activities that make conjectures from cases then justify should be given to students in order to develop a sense of necessity of formal proof. 3) Children have to understand the meaning and usage of mathematical symbol to advance to formal deductive proofs. 4) New theoretical framework is needed to be established to provide a framework for research on elementary school children's justification activities. Research on proof mainly focused on the type of proof in terms of reasoning and activities involved. But proof types are also influenced by the tasks given. In elementary school, tasks that require physical activities or examples are provided. To develop students'various proof types, tasks that require various justification methods should be provided. 5) Children's justification type were influenced not only by development level but also by the concept they had. 6) Justification activities provide useful situation that assess students'mathematical understanding. 7) Teachers understanding toward role of proof(verification, explanation, communication, discovery, systematization) should be the starting point of proof activities.

  • PDF

역사-발생적 접근을 통한 논증 기하 학습의 직관적 수준에 대한 고찰

  • 홍진곤;권석일
    • Journal for History of Mathematics
    • /
    • v.16 no.2
    • /
    • pp.55-70
    • /
    • 2003
  • This study investigated tile intuitive level of justification in geometry, as the former step to the aximatization, with concrete examples. First, we analyze limitations that the axiomatic method has in tile context of discovery and the educational situation. This limitations can be supplemented by the proper use of the intuitive method. Then, using the histo-genetic analysis, this study shows the process of the development of geometrical thought consists of experimental, intuitive, and axiomatic steps. The intuitive method of proof which is free from the rigorous axiom has an advantage that can include the context of discovery. Finally, this paper presents the issue of intuitive proving that the three angles of an arbitrary triangle amount to 180$^{\circ}$, as an example of the local systematization.

  • PDF

Diagrammatic Reasoning in Joseon Mathematics Book 'JuseoGwangyeon' (조선 산학서 《주서관견》의 도해적 추론)

  • CHANG Hyewon
    • Journal for History of Mathematics
    • /
    • v.36 no.4
    • /
    • pp.61-78
    • /
    • 2023
  • By virtue of the characteristics inherent in diagrams, diagrammatic reasoning has potential and limitations that distinguish it from general thinking. It is natural that diagrams rarely appeared in Joseon mathematical books, which were heavily focused on computation and algebra in content, and preferred linguistic expressions in form. However, as the late Joseon Dynasty unfolded, there emerged a noticeable increase in the frequency of employing diagrams, due to the educational purposes to facilitate explanations and the influence of Western mathematics. Analyzing the role of diagrams included in Jo Taegu's 'JuseoGwangyeon', an exemplary book, this study includes discussions on the utilization of diagrams from the perspective of mathematics education, based on the findings of the analysis.

Proof' in school mathematics (학교 수학에서의 '증명')

  • 조완영;권성룡
    • Journal of Educational Research in Mathematics
    • /
    • v.11 no.2
    • /
    • pp.385-402
    • /
    • 2001
  • The purpose of this study is to conceptualize 'proof' school mathematics. We based on the assumption the following. (a) There are several different roles of 'proof' : verification, explanation, systematization, discovery, communication (b) Accepted criteria for the validity and rigor of a mathematical 'proof' is decided by negotiation of school mathematics community. (c) There are dynamic relations between mathematical proof and empirical theory. We need to rethink the nature of mathematical proof and give appropriate consideration to the different types of proof related to the cognitive development of the notion of proof. 'proof' in school mathematics should be conceptualized in the broader, psychological sense of justification rather than in the narrow sense of deductive, formal proof 'proof' has not been taught in elementary mathematics, traditionally, Most students have had little exposure to the ideas of proof before the geometry. However, 'proof' cannot simply be taught in a single unit. Rather, proof must be a consistent part of students' mathematical experience in all grades, in all mathematics.

  • PDF

A Possible Scientific Inquiry Model based on Hypothetico-Deduction Method Involving Abduction

  • Oh, Jun-Young
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.3
    • /
    • pp.486-501
    • /
    • 2012
  • The aims of this study are to investigate two main problems for the hypothetico-deduction method and to develop a scientific inquiry model to resolve these problems. The structure of this scientific inquiry model consists of accounts of the context of discovery and justification that the hypothetico-deduction holds as two main problems : 1) the heuristic flaw in the hypothetico-deduction method is that there is no limit to creating hypotheses to explain natural phenomena; 2) Logically, this brings into question affirming the consequent and modus tollens. The features of the model are as follows: first, the generation of hypotheses using an analogical abduction and the selection of hypotheses using consilience and simplicity; second, the expansion phase as resolution for the fallacy of affirming the consequent and the recycle phase as resolution for modus tollens involving auxiliary hypotheses. Finally, we examine the establishment process of Copernicus's Heliocentric Hypothesis and the main role of the history of science for the historical invalidity of this scientific inquiry model based on three examples of If/and/then type of explanation testing suggested by Lawson (International journal of science and Mathematics Education, 2005a, 3(1): 1-5) We claim that this hypotheticho-deduction process involving abduction approach produced favorable in scientific literacy rising for science teacher as well as students.

A Study on the Nature of the Mathematical Reasoning (수학적 추론의 본질에 관한 연구)

  • Seo, Dong-Yeop
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.14 no.1
    • /
    • pp.65-80
    • /
    • 2010
  • The aims of our study are to investigate the nature of mathematical reasoning and the teaching of mathematical reasoning in school mathematics. We analysed the process of shaping deduction in ancient Greek based on Netz's study, and discussed on the comparison between his study and Freudenthal's local organization. The result of our analysis shows that mathematical reasoning in elementary school has to be based on children's natural language and their intuitions, and then the mathematical necessity has to be formed. And we discussed on the sequences and implications of teaching of the sum of interior angles of polygon composed the discovery by induction, justification by intuition and logical reasoning, and generalization toward polygons.

  • PDF

Analysis of Inductive Reasoning Process (귀납적 추론의 과정 분석)

  • Lee, Sung-Keun;Ryu, Heui-Su
    • School Mathematics
    • /
    • v.14 no.1
    • /
    • pp.85-107
    • /
    • 2012
  • Problem solving is important in school mathematics as the means and end of mathematics education. In elementary school, inductive reasoning is closely linked to problem solving. The purpose of this study was to examine ways of improving problem solving ability through analysis of inductive reasoning process. After the process of inductive reasoning in problem solving was analyzed, five different stages of inductive reasoning were selected. It's assumed that the flow of inductive reasoning would begin with stage 0 and then go on to the higher stages step by step, and diverse sorts of additional inductive reasoning flow were selected depending on what students would do in case of finding counter examples to a regulation found by them or to their inference. And then a case study was implemented after four elementary school students who were in their sixth grade were selected in order to check the appropriateness of the stages and flows of inductive reasoning selected in this study, and how to teach inductive reasoning and what to teach to improve problem solving ability in terms of questioning and advising, the creation of student-centered class culture and representation were discussed to map out lesson plans. The conclusion of the study and the implications of the conclusion were as follows: First, a change of teacher roles is required in problem-solving education. Teachers should provide students with a wide variety of problem-solving strategies, serve as facilitators of their thinking and give many chances for them ide splore the given problems on their own. And they should be careful entegieto take considerations on the level of each student's understanding, the changes of their thinking during problem-solving process and their response. Second, elementary schools also should provide more intensive education on justification, and one of the best teaching methods will be by taking generic examples. Third, a student-centered classroom should be created to further the class participation of students and encourage them to explore without any restrictions. Fourth, inductive reasoning should be viewed as a crucial means to boost mathematical creativity.

  • PDF