• 제목/요약/키워드: direct electrochemical detection

검색결과 22건 처리시간 0.021초

Electrical Recognition of Label-Free Oligonucleotides upon Streptavidin-Modified Electrode Surfaces

  • Park, Jong-Wan;Jung, Ho-Sub;Lee, Hea-Yeon;Kawai, Tomoji
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권6호
    • /
    • pp.505-509
    • /
    • 2005
  • For the purpose of developing a direct label-free electrochemical detection system, we have systematically investigated the electrochemical signatures of each step in the preparation procedure, from a bare gold electrode to the hybridization of label-free complementary DNA, for the streptavidin-modified electrode. For the purpose of this investigation, we obtained the following pertinent data; cyclic voltammogram measurements, electrochemical impedance spectra and square wave voltammogram measurements, in $Fe(CN)_6^{3-}/Fe(CN)_6^{4-}$ solution (which was utilized as the electron transfer redox mediator). The oligonucleotide molecules on the streptavidin-modified electrodes exhibited intrinsic redox activity in the ferrocyanide-mediated electrochemical measurements. Furthermore, the investigation of electrochemical electron transfer, according to the sequence of oligonucleotide molecules, was also undertaken. This work demonstrates that direct label-free oligonucleotide electrical recognition, based on biofunctional streptavidin-modified gold electrodes, could lead to the development of a new biosensor protocol for the expansion of rapid, cost-effective detection systems.

The Coordination of Pyridyl-N to Pentacyanoferrate for the Electrochemical Detecting Small Organic Molecules

  • Choi, Young-Bong;Jeon, Won-Yong;Kim, Hyug-Han
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권2호
    • /
    • pp.595-599
    • /
    • 2013
  • The coordination of pyridyl-N to pentacyanoferrate for the detection of small organic antigens in solution is presented. The unique contribution of this paper is the direct conjugation of pyridyl-N in small organic antigens to pentacyanoferrate. Pentacyanoferrate is promising as an electrochemical label owing to its good electro-chemical properties, which can be utilized to generate an electrical signal in homogeneous electrochemical immunoassays. The facilely synthesized pyridyl-N to pentacyanoferrate was characterized by the electrochemical and spectroscopic methods. Hippuric acid (HA) has been detected competitively on the interaction of free HA and pentacyanoferrate-(4-aminomethylpyridine-hippuric acid) (Fe-HA) to its antibody, with the detection limit of 0.50 ${\mu}g\;mL^{-1}$. While pentacyanoferrate-based immunoassay is in its simplicity and infancy, the proposed immunoassay offers attractive opportunities for developing pyridyl-N-based the electrochemical detection of small organic antigens in the health care area.

Simple Electrochemical Immunosensor for the Detection of Hippuric Acid on the Screen-printed Carbon Electrode Modified Gold Nanoparticles

  • Choi, Young-Bong;Tae, Gun-Sik
    • 전기화학회지
    • /
    • 제14권1호
    • /
    • pp.44-49
    • /
    • 2011
  • This paper describes an electrochemical immunosensor for simple, fast and quantitative detection of a urinary hippuric acid which is one of major biological indicator in toluene-exposed humans. The feature of this electrochemical system for immunoassay of hippuric acid is based on the direct conjugation of ferrocene to a hippuric acid. With the competition between the ferrocene-hippuric acid complex and hippuric acid for binding to the anti-hippuric acid monoclonal antibody coated onto gold nanoparticles, the electrical signals are turned out to be proportional to urinary hippuric acid in the range of 0.01-10 mg/mL, which is enough to be used for the point-of-care. The proposed electrochemical method could extend its applications to detect a wide range of different small molecules of antigens in the health care area.

High sensitivity biosensor for mycotoxin detection based on conducting polymer supported electrochemically polymerized biopolymers

  • Dhayal, Marshal;Park, Gye-Choon;Park, Kyung-Hee;Gu, Hal-Bon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.243.1-243.1
    • /
    • 2010
  • Devices based on nanomaterials platforms are emerging as a powerful tool for ultrasensitive sensors for the direct detection of biological and chemical species. In this talk, we will report the preparation and the full characterization of electrochemical polymerization of biopolymers platforms and nano-structure formation for electrochemical detection of enzymatic activity and toxic compound in electrolyte for biosensor applications. Formation of an electroactive polymer film of two different compounds has been quantified by observing new redox peak at higher potentials in cyclic voltammogram measurements. RCT value of at various biopolymer concentration based hybrid films has been obtained from electrochemical impedance spectroscopy analysis and possible mechanism for formation of complexes during electrochemical polymerization on conducting substrates has been investigated. Biosensors developed based on these hybrid biopolymers have very high sensitivity.

  • PDF

CNT Fibers의 전기화학적 특성 및 비효소적 글루코스 검출 성능 고찰 (Investigation on Electrochemical Property of CNT Fibers and its Non-enzymatic Sensing Performance for Glucose Detection)

  • 송민정
    • Korean Chemical Engineering Research
    • /
    • 제59권2호
    • /
    • pp.159-164
    • /
    • 2021
  • 부착형(attachable) 타입의 웨어러블 디바이스 적용을 위한 패브릭(fabric)이나 텍스처(textiles) 타입의 고성능 전극 소재 개발에 대한 필요성이 부각되고 있다. 본 연구에서는 유연 전극 소재로 탄소나노튜브 섬유(CNT fibers)를 응용하고자, CNT fibers의 전기화학적 특성과 이를 적용한 비효소적 글루코스 센싱 성능을 확인하였다. CNT fibers의 표면 구조는 주사전자 현미경(SEM)을 이용하여 분석하였으며, 전기화학적 특성 및 센싱 성능 분석은 시간대전류법와 순환전압 전류법, 전기화학 임피던스 분석법을 이용하여 수행되었다. CNT fibers 전극은 낮은 capacitive current와 산화-환원 화학종과 전극 계면 간의 효율적인 direct electron transfer에 의한 우수한 electrochemical activity 등 향상된 전기화학적 특성으로 인해 높은 감도와 넓은 선형 농도 범위, 그리고 낮은 검출 한계 등 우수한 센싱 특성을 보였다. 따라서, 본 연구는 CNT fibers 기반의 고성능 유연 전극 소재 개발을 위한 기초 연구로 활용될 수 있을 것으로 기대된다.

제초제 검출을 위한 전기화학적 일회용 면역센서 (Disposable Electrochemical Immunosensors for the Detection of Herbicide)

  • 장승철
    • 센서학회지
    • /
    • 제20권1호
    • /
    • pp.35-39
    • /
    • 2011
  • A disposable electrochemical immunosensor system has been developed for the detection of herbicide in aqueous samples. Disposable screen printed carbon electrodes(SPCE) were used as basic electrodes and an enzyme, horseradish peroxidase (HRP), and anti-herbicide antibodies was immobilised on to the working electrode of SPCE by using avidin-biotin coupling reactions. An herbicide-glucose oxidase conjugates have been used for the competitive immunoreaction with sample herbicides. The enzymatic reaction between the conjugated glucose oxidase and glucose added generates hydrogen peroxide, which was reduced by the peroxidase immobilised. The latter process caused an electrical current change, due to direct re-reduction of peroxidase by a direct electron transfer mechanism, which was measured to determine the herbicides in the sample. The optimal operational condition was found to be: $20\;{\mu}gl-1$ deglycosylated avidin loading to the working electrode and working potential +50 mV vs. Ag/AgCl. The total assay time was 15 min after sample addition. The detection limits for herbicides, atrazine and simazine, were found to be 3 ppb and 10 ppb, respectively.

Electrodeposition of Graphene-Zn/Al Layered Double Hydroxide (LDH) Composite for Selective Determination of Hydroquinone

  • Kwon, Yeonji;Hong, Hun-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권6호
    • /
    • pp.1755-1762
    • /
    • 2013
  • A graphene-Zn/Al layered double hydroxide composite film was simultaneously prepared by electrochemical deposition on the surface of a glassy carbon electrode (G-LDH/GCE) from the mixture solution containing GO and nitrate salts of $Zn^{2+}$ and $Al^{3+}$. The modified electrode showed good electrochemical performances toward the simultaneous electrochemical detection of hydroquinone (HQ), catechol (CA) and resorcinol (RE) due to the unique properties of graphene (G) and LDH such as large active surface area, facile electronic transport and high electrocatalytic activity. The redox characteristics of G-LDH/GCE were investigated with cyclic voltammetry and differential pulse voltammetry. The well-separated oxidation peak potentials, corresponding to the oxidation of HQ, CA and RE, were observed at 0.126 V, 0.228 V and 0.620 V respectively. The amperometric response of the modified electrode exhibited that HQ can be detected without interference of CA and RE. Under the optimized conditions, the oxidation peak current of HQ is linear with the concentration of HQ from 6.0 ${\mu}M$ to 325.0 ${\mu}M$ with the detection limit of 0.077 ${\mu}M$ (S/N=3). The modified electrode was successfully applied to the direct determination of HQ in a local tap water, showing reliable recovery data.

Determination of Ascorbic Acid, Acetaminophen, and Caffeine in Urine, Blood Serum by Electrochemical Sensor Based on ZnO-Zn2SnO4-SnO2 Nanocomposite and Graphene

  • Nikpanje, Elham;Bahmaei, Manochehr;Sharif, Amirabdolah Mehrdad
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권2호
    • /
    • pp.173-187
    • /
    • 2021
  • In the present research, a simple electrochemical sensor based on a carbon paste electrode (CPE) modified with ZnO-Zn2SnO4-SnO2 and graphene (ZnO-Zn2SnO4-SnO2/Gr/CPE) was developed for the direct, simultaneous and individual electrochemical measurement of Acetaminophen (AC), Caffeine (Caf) and Ascorbic acid (AA). The synthesized nano-materials were investigated using scanning electron microscopy, X-ray Diffraction, Fourier-transform infrared spectroscopy, and electrochemical impedance spectroscopy techniques. Cyclic voltammetry and differential pulse voltammetry were applied for electrochemical investigation ZnO-Zn2SnO4-SnO2/Gr/CPE, and the impact of scan rate and the concentration of H+ on the electrode's responses were investigated. The voltammograms showed a linear relationship between the response of the electrode for individual oxidation of AA, AC and, Caf in the range of 0.021-120, 0.018-85.3, and 0.02-97.51 μM with the detection limit of 8.94, 6.66 and 7.09 nM (S/N = 3), respectively. Also, the amperometric technique was applied for the measuring of the target molecules in the range of 0.013-16, 0.008-12 and, 0.01-14 μM for AA, AC and, Caf with the detection limit of 6.28, 3.64 and 3.85 nM, respectively. Besides, the ZnO-Zn2SnO4-SnO2/Gr/CPE shows an excellent selectivity, stability, repeatability, and reproducibility for the determination of AA, AC and, Caf. Finally, the proposed sensor was successfully used to show the amount of AA, AC and, Caf in urine, blood serum samples with recoveries ranging between 95.8% and 104.06%.

High-risk Human Papillomavirus Genotype Detection by Electrochemical DNA Chip Method

  • Chansaenroj, Jira;Theamboonlers, Apiradee;Chinchai, Teeraporn;Junyangdikul, Pairoj;Swangvaree, Sukumarn;Karalak, Anant;Takahashi, Masayoshi;Nikaido, Masaru;Gemma, Nobuhiro;Poovorawan, Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권4호
    • /
    • pp.1151-1158
    • /
    • 2012
  • High-risk human papillomavirus (HPV) genotypes are the major cause of cervical cancer. Hence, HPV genotype detection is a helpful preventive measure to combat cervical cancer. Recently, several HPV detection methods have been developed, each with different sensitivities and specificities. The objective of this study was to compare HPV high risk genotype detection by an electrochemical DNA chip system, a line probe assay (INNO-LiPA) and sequencing of the L1, E1 regions. A total of 361 cervical smears with different cytological findings were subjected to polymerase chain reaction-sequencing and electrochemical DNA chip assessment. Multiple infections were found in 21.9% (79/361) of the specimens, most prevalently in 20-29-year olds while the highest prevalence of HPV infection was found in the 30-39-year age group. The most prevalent genotype was HPV 16 at 28.2% (138/489) followed by HPV 52 at 9.6% (47/489), with the other types occurring at less than 9.0%. The electrochemical DNA chip results were compared with INNO-LiPA and sequencing (E1 and L1 regions) based on random selection of 273 specimens. The results obtained by the three methods were in agreement except for three cases. Direct sequencing detected only one predominant genotype including low risk HPV genotypes. INNO-LiPA identified multiple infections with various specific genotypes including some unclassified-risk genotypes. The electrochemical DNA chip was highly accurate, suitable for detection of single and multiple infections, allowed rapid detection, was less time-consuming and was easier to perform when compared with the other methods. It is concluded that for clinical and epidemiological studies, all genotyping methods are perfectly suitable and provide comparable results.

보론 도핑 다이아몬드로 표면처리된 탄소섬유 기반의 글루코스 검출용 비효소적 바이오센서 (Nonenzymatic Sensor Based on a Carbon Fiber Electrode Modified with Boron-Doped Diamond for Detection of Glucose)

  • 송민정
    • Korean Chemical Engineering Research
    • /
    • 제57권5호
    • /
    • pp.606-610
    • /
    • 2019
  • 본 연구에서 우리는 보론 도핑된 다이아몬드 나노물질을 이용하여 유연성 탄소 섬유 기반의 전극(CF-BDD 전극)을 개발하고, 이를 비효소적 글루코스 센서에 적용하여 전기화학적 특성을 확인하였다. 이 전극은 탄소 섬유 표면에 정전하 자기조립법을 이용하여 BDD 층을 증착하여 제작하였다. 이 전극 물질의 표면 구조는 주사전자 현미경(SEM)을 이용하여 분석하였으며, 전기화학적 특성 및 센싱 성능 분석은 시간대전류법(CA)와 순환전압 전류법(CV), 전기화학 임피던스(EIS)으로 실행하였다. 제작된 CF-BDD 전극은 산화-환원 화학종과 전극 계면 간의 effective direct electron transfer와 large effective surface area, high catalytic activity의 우수한 특성들을 보였다. 결과적으로, CF 센서와 비교에서 CF-BDD 센서는 더 넓은 선형 농도 범위(3.75~50 mM)와 더 빠른 감응 시간(3초 이내), 더 높은 감도(388.8 nA/mM) 등의 향상된 센싱 특성을 보였다. 따라서, 본 연구에서 개발된 전극 물질은 다양한 전기화학 센서 뿐 아니라, 웨어러블 센서 소재로도 활용 가능할 것으로 기대된다.