DOI QR코드

DOI QR Code

Nonenzymatic Sensor Based on a Carbon Fiber Electrode Modified with Boron-Doped Diamond for Detection of Glucose

보론 도핑 다이아몬드로 표면처리된 탄소섬유 기반의 글루코스 검출용 비효소적 바이오센서

  • Song, Min-Jung (Department of Nano Convergence Engineering, Seokyeong University)
  • 송민정 (서경대학교 나노융합공학과)
  • Received : 2019.05.08
  • Accepted : 2019.07.01
  • Published : 2019.10.01

Abstract

In this study, we demonstrated that the nonenzymatic glucose sensor based on the flexible carbon fiber bundle electrode with BDD nanocomposites (CF-BDD electrode). As a nano seeding method for the deposition of BDD on flexible carbon fiber, electrostatic self-assembly technique was employed. Surface morphology of BDD coated carbon fiber electrode was observed by scanning electron microscopy. And the electrochemical characteristics were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. This CF-BDD electrode exhibited a large surface area, a direct electron transfer between the redox species and the electrode surface and a high catalytic activity, resulting in a wider linear range (3.75~50 mM), a faster response time (within 3 s) and a higher sensitivity (388.8 nA/mM) in comparison to a bare CF electrode. As a durable and flexible electrochemical sensing electrode, this brand new CF-BDD scheme has promising advantages on various electrochemical and wearable sensor applications.

본 연구에서 우리는 보론 도핑된 다이아몬드 나노물질을 이용하여 유연성 탄소 섬유 기반의 전극(CF-BDD 전극)을 개발하고, 이를 비효소적 글루코스 센서에 적용하여 전기화학적 특성을 확인하였다. 이 전극은 탄소 섬유 표면에 정전하 자기조립법을 이용하여 BDD 층을 증착하여 제작하였다. 이 전극 물질의 표면 구조는 주사전자 현미경(SEM)을 이용하여 분석하였으며, 전기화학적 특성 및 센싱 성능 분석은 시간대전류법(CA)와 순환전압 전류법(CV), 전기화학 임피던스(EIS)으로 실행하였다. 제작된 CF-BDD 전극은 산화-환원 화학종과 전극 계면 간의 effective direct electron transfer와 large effective surface area, high catalytic activity의 우수한 특성들을 보였다. 결과적으로, CF 센서와 비교에서 CF-BDD 센서는 더 넓은 선형 농도 범위(3.75~50 mM)와 더 빠른 감응 시간(3초 이내), 더 높은 감도(388.8 nA/mM) 등의 향상된 센싱 특성을 보였다. 따라서, 본 연구에서 개발된 전극 물질은 다양한 전기화학 센서 뿐 아니라, 웨어러블 센서 소재로도 활용 가능할 것으로 기대된다.

Keywords

References

  1. Lu, F., Bo, L., Guang, Y., Yichuan, H., Qin, Z. and Xuesong, Y., "A Needle-type Glucose Biosensor Based on PANI Nanofibers and PU/E-PU Membrane for Long-term Invasive Continuous Monitoring," Biosens. Bioelectron., 97, 196-202(2017). https://doi.org/10.1016/j.bios.2017.04.043
  2. Lee, S. J., Yoon, H. S., Xuan, X. and Park, J. Y., "A Patch Type Non-enzymatic Biosensor Based on 3D SUS Micro-needle Electrode Array for Minimally Invasive Continuous Glucose Monitoring," Sens. Actuators B, 222, 1144-1151(2016). https://doi.org/10.1016/j.snb.2015.08.013
  3. Yang, Y. L., Chuang, M. C., Lou, S. L. and Wang, J., "Thick-film Textile-based Amperometric Sensors and Biosensors," Analyst, 135(6), 1230-1234(2010). https://doi.org/10.1039/b926339j
  4. Windmiler, J. R. and Wang J., "Wearable Electrochemical Sensors and Biosensors: a Review," Electroanalysis, 25(1), 29-46(2013). https://doi.org/10.1002/elan.201200349
  5. Perret, A., Haenni, W., Skinner, N., Tang, X. M., Gandini, D., Comninellis, C., Correa, B. and Foti, G., "Electrochemical Behavior of Synthetic Diamond Thin Film Electrodes," Diamond Relat. Mater., 8(2), 820-823(1999). https://doi.org/10.1016/S0925-9635(98)00280-5
  6. Lee, S. K., Kim, J. H., Jeong, M. G., Song, M. J. and Lim, D. S., "Direct Deposition of Patterned Nanocrystalline CVD Diamond Using an Electrostatic Self-assembly Method with Nanodiamond Particles," Nanotechnology, 21(50), 505302(2010). https://doi.org/10.1088/0957-4484/21/50/505302
  7. Du, J., Yue, R., Yao, Z., Jiang, F., Du, Y., Yang, P. and Wang, C., "Nonenzymatic Uric Acid Electrochemical Sensor Based on Graphene-modified Carbon Fiber Electrode," Colloids and Surfaces A: Physicochem. Eng. Aspects, 419, 94-99(2013). https://doi.org/10.1016/j.colsurfa.2012.11.060
  8. Wu, J. and Qu, Y., "Mediator-free Amperometric Determination of Glucose Based on Direct Electron Transfer Between Glucose Oxidase and an Oxidized Boron-doped Diamond Electrode," Anal. Bioanal. Chem., 385(7), 1330-1335(2006). https://doi.org/10.1007/s00216-006-0534-y
  9. Kang, X., Wang, J., Wu, H., Aksay, I. A., Liu, J. and Lin, Y., "Glucose Oxidase-graphene-chitosan Modified Electrode for Direct Electrochemistry and Glucose Sensing," Biosens. Bioelectron., 25(4), 901-905(2009). https://doi.org/10.1016/j.bios.2009.09.004
  10. Upadhyay, S., Rao, G. R., Sharma, M. K., Bhattacharya, B. K., Rao, V. K. and Vijayaraghavan, R., "Immobilization of Acetylcholinesterase-choline Oxidase on a Gold-platinum Bimetallic Nanoparticles Modified Glassy Carbon Electrode for the Sensitive Detection of Organophosphate Pesticides, Carbamates and Nerve Agents," Biosens. Bioelectron., 25(4), 832-838(2009). https://doi.org/10.1016/j.bios.2009.08.036
  11. Bard, A. J. and Faulkner, L. R., "Electrochemical Methods - Fundamentals and Applications," Wiley, New York, 2001.
  12. Felix, S., Chakkravarthy, B. P., Jeong, S. K. and Grace, A. N., "Synthesis of Pt Decorated Copper Oxide Nanoleaves and Its Electrochemical Detection of Glucose," J. Electrochem. Soc., 162(6), H392-H396(2015). https://doi.org/10.1149/2.0881506jes

Cited by

  1. CNT Fibers의 전기화학적 특성 및 비효소적 글루코스 검출 성능 고찰 vol.59, pp.2, 2019, https://doi.org/10.9713/kcer.2020.59.2.159