Browse > Article
http://dx.doi.org/10.9713/kcer.2020.59.2.159

Investigation on Electrochemical Property of CNT Fibers and its Non-enzymatic Sensing Performance for Glucose Detection  

Song, Min-Jung (Department of Nano Convergence Engineering, Seokyeong University)
Publication Information
Korean Chemical Engineering Research / v.59, no.2, 2021 , pp. 159-164 More about this Journal
Abstract
As the attachable-type wearable devices have received considerable interests, the need for the development of high-performance electrode materials of fabric or textiles type is emerging. In this study, we demonstrated the electrochemical property of CNT fibers electrode as a flexible electrode material and its non-enzymatic glucose sensing performance. Surface morphology of CNT fibers was observed by SEM. And the electrochemical characteristics were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. The CNT fibers based sensor exhibited improved sensing performances such as high sensitivity, a wide linear range, and low detection limit due to improved electrochemical properties such as low capacitive current, good electrochemical activity by efficient direct electron transfer between the redox species and the electrode interface. Therefore, this study is expected to be used as a basic research for the development of high performance flexible electrode materials based on CNT fibers.
Keywords
CNT fibers; Electrochemical property; Non-enzymatic sensor; Glucose; Flexible electrode;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lee, S. J., Yoon, H. S., Xuan, X. and Park, J. Y., "A Patch Type Non-enzymatic Biosensor Based on 3D SUS Micro-needle Electrode Array for Minimally Invasive Continuous Glucose Monitoring," Sens. Actuators B, 222, 1144-1151(2016).   DOI
2 Wang, L., Wang, L., Zhang, Ye, Pan, J., Li, S., Sun, X., Zhang, B. and Peng, H., "Weaving Sensing Fibers into Electrochemical Fabric for Real-time Health Monitoring," Adv. Funct. Mater., 28, 1804456(2018).   DOI
3 Xu, G., Cheng, .C., Liu, Z., Yuan, W., Wu, X., Lu, Y., Low, S. S., Liu, J., Zhu, L., Ji, D., Li, S., Chen, Z., Wang, L., Yang, Q., Cui, Z. and Liu, Q., "Battery-free and Wireless Epidermal Electrochemical System with All-printed Stretchable Electrode Array for Multiplexed in situ Sweat Analysis," Adv. Mater. Technol., 4, 1800658(2019).   DOI
4 Lian, Y., Wang, M., Yang, X., Li, Z., Yang, F., Wang, Y., Tai, H., Liao, Y., Wu, J., Wang, X., Jiang, Y. and Tao, G., "A Multifunctional Wearable E-textile via Integrated Nanowire-coated Fabrics," J. Mater. Chem. C, 8, 8399-8409(2020).   DOI
5 Singha, K., Kumar, J. and Pandit, P., "Recent Advancements in Wearable & Smart Textiles: An Overview," Mater. Today Proc., 16, 1518-1523(2019).   DOI
6 Hatamie, A., Angizi, S., Kumar, S., Pandey, C. M., Simchi, A., Willander, M. and Malhotra, B. D., "Review - Textile Based Chemical and Physical Sensors for Healthcare Monitoring," J. Electrochem. Soc., 167, 037546(2020).   DOI
7 Chuang, M. C., Windmiller, J. R., Santhosh, P., Pamirez, G. V., Galik, M., Chou, T. Y. and Wang, J., "Textile-based Electrochemical Sensing: Effect of Fabric Substrate and Detection of Nitroaromatic Explosives," Electroanalysis, 22, 2511-2518(2010).   DOI
8 Hu, C. and Hu, S., "Carbon Nanotubes-based Electrochemical Sensors: Principles and Applications in Biomedical Systems," J. Sens., 2009, 187615(2009).
9 Koziol, K., Vilatela, J., Moisala, A., Motta, M., Cunniff, P., Sennett, M. and Windle, A., "High-performance Carbon Nanotube Fiber," Science, 318, 1892-1895(2007).   DOI
10 Lee, J., Lee, D. M., Jung, Y., Park, J., Lee, H. S., Kim, Y. K., Park, C. R., Jeong, H. S. and Kim, S. M., "Direct Spinning and Densification Method for High-performance Carbon Nanotube Fibers," Nat. Commun., 10, 2962(2019).   DOI
11 Bai, Y., Zhang, R., Ye, X., Zhu, Z., Xie, H., Shen, B., Cai, D., Liu, B., Zhang, C., Jia, Z., Zhang, S., Li, X. and Wei, F., "Carbon Nanotube Bundles with Tensile Strength over 80 GPa," Nat. Nanotechnol., 13, 589-595(2018).   DOI
12 Wu, A. S. and Chou, T. W., "Carbon Nanotube Fibers for Advanced Composites," Mater. Today, 15, 302-310(2012).   DOI
13 Behabtu, N., Young, C. C., Tsentalovich, D. E., Kleinerman, O., Wang, X., Ma, A. W. K., Bengio, E. A., Waarbeek, R. F., Jong, J. J., Hoogerwerf, R. E., Fairchild, S. B., Ferguson, J. B., Marutama, B., Kono, J., Talmon, Y., Cohen, Y., Otto, M. J. and Pasquali, M., "Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity," Science, 339, 182-186(2013).   DOI
14 Hiremath, N., Mays, J. and Bhat, G., "Recent Developments in Carbon Fibers and Carbon Nanotube-based Fibers: A Review," Polym. Rev., 57, 339-368(2017).   DOI
15 Song, M. J., "Nonenzymatic Sensor Based on a Carbon Fiber Electrode Modified with Boron-doped Diamond for Detection of Glucose," Korean Chem. Eng. Res., 57, 606-610(2019).   DOI
16 Misak, H. E., Asmatulu, R. A., O'Malley, M., Jurak, E. and Mall, S., "Functionalization of Carbon Nanotube Yarn by Acid Treatment," Int. J. Smart Nano Mater., 5, 34-43(2014).   DOI
17 Felix, S., Chakkravarthy, B. P., Jeong, S. K. and Grace, A. N., "Synthesis of Pt Decorated Copper Oxide Nanoleaves and Its Electrochemical Detection of Glucose," J. Electrochem. Soc., 162, H392-H396(2015).   DOI
18 Song, M. J., Kim, J. H., Lee, S. K., Lee, J. H., Lim, D. S., Hwang, S. W. and Whang, D., "Pt-polyaniline Nanocomposite on Boron-doped Diamond Electrode for Amperometric Biosensor with Low Detection Limit," Microchim. Acta, 171, 249-255(2010).   DOI
19 Torz-Piotrowska, R., Wrzyszczynski, A., Paprocki, K., Szreiber, M., Uniszkiewicz, C. and Staryga, E., "The Application of CVD Diamond Films in Cyclic Voltammetry," J. Achiev. Mater. Manuf. Eng., 37, 486-491(2009).
20 Wu, J. and Qu, Y., "Mediator-free Amperometric Determination of Glucose Based on Direct Electron Transfer Between Glucose Oxidase and An Oxidized Boron-doped Diamond Electrode," Anal. Bioanal. Chem., 385, 1330-1335(2006).   DOI
21 Bard, A. J. and Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., John Wiley and Sons, New York(1980).
22 Upadhyay, S., Rao, G. R., Sharma, M. K., Bhattacharya, B. K., Rao, V. K. and Vijayaraghavan, R., "Immobilization of Acetylcholinesterase-choline Oxidase on a Gold-platinum Bimetallic Nanoparticles Modified Glassy Carbon Electrode for the Sensitive Detection of Organophosphate Pesticides, Carbamates and Nerve Agents," Biosens. Bioelectron., 25, 832-838(2009).   DOI
23 Dung, N. Q., Patil, D., Jung, H. and Kim, D., "A High-performance Nonenzymatic Glucose Sensor Made of CuO-SWCNT Nanocomposites," Biosens. Bioelectron., 42, 280-286(2013).   DOI
24 Thirumalai, D., Subramani, D., Shin, B., Park, H. and Chang, S. C., "A Metal-free, Non-enzymatic Electrochemical Glucose Sensor with a De-bundled Single-walled Carbon Nanotube-modified Electrode," Bull. Korean Chem. Soc., 39, 141-145(2018).   DOI
25 Lu, F., Bo, L., Guang, Y., Yi, C. H, Qin, Z. and Xue, S. Y., "A Needle-type Glucose Biosensor Based on PANI Nanofibers and PU/E-PU Membrane for Long-term Invasive Continuous Monitoring," Biosens. Bioelectron., 97, 196-202(2017).   DOI
26 Jiang, L. C. and Zhang, W. D., "A High Sensitive Nonenzymatic Glucose Sensor Based on CuO Nanoparticles-modified Carbon Nanotube Electrode," Biosens. Bioelectron., 25, 1402-1407(2010).   DOI
27 Chen, J., Zhang, W. D. and Ye, J. S., "Nonenzymatic Electrochemical Glucose Sensor Based on MnO2/MWNTs Nanocomposite," Electrochem. Commun., 10, 1268-1271(2008).   DOI