DOI QR코드

DOI QR Code

Simple Electrochemical Immunosensor for the Detection of Hippuric Acid on the Screen-printed Carbon Electrode Modified Gold Nanoparticles

  • Received : 2011.01.25
  • Accepted : 2011.02.21
  • Published : 2011.02.28

Abstract

This paper describes an electrochemical immunosensor for simple, fast and quantitative detection of a urinary hippuric acid which is one of major biological indicator in toluene-exposed humans. The feature of this electrochemical system for immunoassay of hippuric acid is based on the direct conjugation of ferrocene to a hippuric acid. With the competition between the ferrocene-hippuric acid complex and hippuric acid for binding to the anti-hippuric acid monoclonal antibody coated onto gold nanoparticles, the electrical signals are turned out to be proportional to urinary hippuric acid in the range of 0.01-10 mg/mL, which is enough to be used for the point-of-care. The proposed electrochemical method could extend its applications to detect a wide range of different small molecules of antigens in the health care area.

Keywords

References

  1. J. W. Boor and H. I. Hutrig, ‘Permanent cerebellar ataxia after exposure to toluene’ Ann. Neurol., 2, 440 (1977). https://doi.org/10.1002/ana.410020518
  2. N. L. Rosenberg, M. C. Spitz, C. M. Filley, K. A. Davis, and H. H Schaumburg, ‘Central nervous system effects of chronic toluene abuse-clinical, brainstem evoked response and magnetic -resonance imaging studies’ Neurotoxicol. Teratol., 10, 489 (1988). https://doi.org/10.1016/0892-0362(88)90014-1
  3. R. G. Feldman, M.H. Ratner, and T. Ptak, ‘Chronic toxic encephalopathy in a painter exposed to mixed solvents’ Environmental Health Perspectives., 107, 417 (1999). https://doi.org/10.1289/ehp.99107417
  4. H. M. Park, S. H. Lee, H. Chung, O. H. Kwon, K. Y. Yoo, H. H. Kim, S. C. Heo, J. S. Park, and G. S. Tae, ‘Immunochromatographic analysis of hippuric acid in urine’ J Anal Toxicol., 31, 347 (2007). https://doi.org/10.1093/jat/31.6.347
  5. P. Kongtip, J. Vararussami, and V. Pruktharathikul, ‘Modified method for determination of hippuric acid and methylhippuric acid in urine by gas chromatography’ J Chromatogr B Biomed Sci Appl., 751, 199 (2001). https://doi.org/10.1016/S0378-4347(00)00463-1
  6. K. Tomokuni and M. Ogata, ‘Direct Colorimetric Determination of Hippuric Acid in Urine’ Clin Chem., 18, 349 (1972).
  7. T. Sakai, Y. Niinuma, S. Yanagihara, and K. Ushio, ‘Simultaneous determination of hippuric acid and o-, mand p-methylhippuric acids in urine by high-performance liquid chromatography’ J Chromatogr., 276, 182 (1983). https://doi.org/10.1016/S0378-4347(00)85080-X
  8. A. C. Lee, G. Liu, C. K. Heng, S. N. Tan, T. M. Lim, and Y. Lin, ‘Sensitive electrochemical detection of horseradish peroxidase at disposable screen-printed carbon electrode’ Electroanalysis., 20, 2040 (2008). https://doi.org/10.1002/elan.200804287
  9. Y. Y. Lin, J. Wang, G. Liu, H. Wu, C. M. Wai, and Y. Lin, ‘Label/immunochromatographic electrochemical biosensor for rapid and sensitive detection of prostate-specific antigen’ Biosensor and Bioelectronics., 23, 1659 (2008). https://doi.org/10.1016/j.bios.2008.01.037
  10. S. Prabhulkar, S. Alwarappan, G. Liu, and C. Z. Li, ‘Amperometric micro-immunosensor for the detection of tumor biomarker’ Biosensor and Bioelectronics., 24, 3524 (2009). https://doi.org/10.1016/j.bios.2009.05.002
  11. S. J. Yoo, Y. B. Choi, J. I. Ju, G. S. Tae, H. H. Kim and, S. H. Lee, ‘Microfluidic chip-based electrochemical immunoassay for hippuric acid’ Analyst., 134, 2462 (2009). https://doi.org/10.1039/b915356j
  12. J. Wang, A. Ibanez, M. P. Chatrathi, and A. Escarpa, ‘Electrochemical enzyme immunoassays on microchip platforms’ Anal Chem., 73, 5323 (2001). https://doi.org/10.1021/ac010808h
  13. C. Duan and M. E. Meyerhoff, ‘Immobilization of proteins on gold Coated Porous Membranes Via an Activated Self-Assembled Monolayer of Thioctic acid’ Anal Chem., 66, 1369 (1994). https://doi.org/10.1021/ac00081a003
  14. T. J. Moore, M. J. Joseph, B. W. Allen, L. A, and Jr. Coury, ‘Enzymically Amplified Voltammetric Sensor for Microliter Sample Volumes of Salicylate’ Anal Chem., 67, 1896 (1995). https://doi.org/10.1021/ac00107a022
  15. J. Wang, B. Tian, and K. R. Rogers, ‘Thick-film electrochemical immunosensor based on stripping potentiometric detection of a metal ion label’ Anal Chem., 70, 1682 (1998). https://doi.org/10.1021/ac971298n
  16. T. K. Lim and T. Matsunaga, ‘Construction of electrochemical flow immunoassay system using capillary columns and ferrocene conjugated immunoglobulin G for detection of human chorionic gonadotrophin’ Biosens Bioelectron, 16, 1063 (2001). https://doi.org/10.1016/S0956-5663(01)00228-7
  17. T. K. Lim, S. Imai, and T. Matsunaga, ‘Miniaturized amperometric flow immunoassay system using a glass fiber membrane modified with anion’ Biotechnol Bioeng., 77, 758 (2002). https://doi.org/10.1002/bit.10158
  18. T. K. Lim, H. Ohta, and T. Matsunaga, ‘Microfabricated On-Chip-Type Electrochemical Flow Immunoassay System for the Detection of Histamine Released in Whole Blood Samples’ Anal Chem., 75, 3316 (2003). https://doi.org/10.1021/ac020749n
  19. S. Purushothama, S. Kradtap, C. A. Wijayawardhana, H. B. Halsall, and W. R. Heineman, ‘Small Volume Bead Assay for Ovalbumin with Electrochemical Detection’ Analyst., 126, 337 (2001). https://doi.org/10.1039/b006798i
  20. Y. Zhang and A. Heller, ‘Reduction of the nonspecific binding of a target antibody and of its enzyme-labeled detection probe enabling electrochemical immunoassay of an antibody through the 7 pg/ml-100 ng/mL (40 fM-400 pM) range’ Anal Chem., 77, 7758 (2005). https://doi.org/10.1021/ac051218c
  21. C. Padeste, A. Grubelnik, and L. Tiefenauer, ‘Ferroceneavidin conjugates for bioelectrochemical applications’ Biosens Bioelectron., 15, 431 (2000). https://doi.org/10.1016/S0956-5663(00)00106-8
  22. H. C. Yoon, M. Y. Hong, and H. S. Kim, ‘Functionalization of a poly(amidoamine) dendrimer with ferrocenyls and its application to the construction of a reagentless enzyme electrode’ Anal Chem., 72, 4420 (2000) https://doi.org/10.1021/ac0003044
  23. Young-Bong Choi and Hyug-Han Kim, ‘Synthesis of osmium redox complex and its application for biosensor using an electrochemical method’ Journal of the Korean Electrochemical Society., 10, 152 (2007). https://doi.org/10.5229/JKES.2007.10.2.150
  24. M. O. Finot, G. D. Braybrook, and M. T. McDermott, ‘Characterization of electrochemically deposited gold nanocrystals on glassy carbon electrodes’ J Electrochem Soc., 466, 234 (1999).
  25. M. S. El-Deab, T. Okajima, and T. Ohsaka, ‘Electrochemical reduction of oxygen on gold nanoparticle-electrodeposited glassy carbon electrodes’ J Electrochem Soc., 150, A851 (2003). https://doi.org/10.1149/1.1574806

Cited by

  1. Heterogeneous Electrochemical Immunoassay of Hippuric Acid on the Electrodeposited Organic Films vol.14, pp.12, 2014, https://doi.org/10.3390/s141018886
  2. A Simple Interfacial Platform for Homogeneous Electrochemical Immunoassays Using a Poly(Vinylimidazole)-Modified Electrode vol.17, pp.12, 2016, https://doi.org/10.3390/s17010054