• Title/Summary/Keyword: digital $(k_0,\

Search Result 3,228, Processing Time 0.039 seconds

A 6-Bit MMIC Digital Attenuator with High Attenuation Accuracy and Small Phase Variation for X-band TR Module Applications (X-band 송수신 모듈을 위한 높은 감쇠 정확도와 작은 위상 변동을 가진 6 비트 MMIC 디지털 감쇠기)

  • Ju, In-Kwon;Yom, In-Bok;Lee, Jeong-Won;Lee, Soo-Ho;Ahn, Chang-Soo;Kim, Sun-Joo;Park, Dong-Un;Oh, Seung-Hyeup
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.452-459
    • /
    • 2009
  • A 6-bit MMIC digital attenuator applicable to X-band TR module has been developed by using $0.5{\mu}m$GaAs pHEMT processes. The Switched-T attenuator scheme and the switched-path attenuator scheme were adopted to obtain low insertion loss and small phase variation, respectively. Resistors and transmission lines are optimized to achieve the digital attenuator with high attenuation accuracy and small phase variation. The digital attenuator has RMS error of 0.4dB, resolution of 0.5dB and dynamic range of 31.5dB. The measurement results show that in-out VSWRs are less than 1.5, phase variation is from -7 to +2 degrees and IIP3 is 36.5dBm.

2X Converse Oversampling 1.65Gb/s/ch CMOS Semi-digital Data Recovery (2X Converse Oversampling 1.65Gb/s/ch CMOS 준 디지털 데이터 복원 회로)

  • Kim, Gil-Su;Kim, Kyu-Young;Shon, Kwan-Su;Kim, Soo-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.6 s.360
    • /
    • pp.1-7
    • /
    • 2007
  • This paper proposes CMOS semi-digital data recovery with 2X converse oversampling to reduce power consumption and chid area of high definition multimedia interface (HDMI) receivers. Proposed recovery can reduce its power and the effective area by using nt converse oversampling algorithm and semi-digital architecture. Proposed circuit is fabricated using 0.18um CMOS process and measured results demonstrated the power consumption of 14.4mW, the effective area of $0.152mm^2$ and the jitter tolerance of 0.7UIpp with 1.8V supply voltage.)

Reliability and Accuracy of Digital Impression Obtained from CS-3500 Intraoral Scanner (CS-3500 구강 내 스캐너로 채득된 디지털 인상의 신뢰도 및 정확도 평가)

  • Kim, Sa-Hak;Kim, Jae-Hong;Kim, Chong-Kyen
    • Journal of dental hygiene science
    • /
    • v.15 no.5
    • /
    • pp.673-678
    • /
    • 2015
  • The purpose of this study was to evaluate the reliability and accuracy of linear measurements in digital models compared to master model. A master model (ANKA-4; Frasaco GmbH, Tettnang, Germany) with the prepared upper full arch tooth was used. Four linear measurements were recorded between landmarks, directly on the master model and the digital models by a single examiner. Measurements were made with a digital caliper from manual model and with the software from the virtual models. The t-test for paired samples and intraclass correlation coefficient (ICC) were used for statistical analysis. The measurement of two methods showed good reliability. The mean differences between master and digital model were 0.06~0.12 mm. These in vitro studies show that accuracy and reliability of the digital impression is similar to that of the gold standard. Therefore digital impression was also considered to be a acceptable for placement clinically.

Measurement Resolution of Edge Position in Digital Optical Imaging

  • Lee, Sang-Yoon;Kim, Seung-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.49-55
    • /
    • 2000
  • The semiconductor industry relies on digital optical imaging for the overlay metrology of integrated circuit patterns. One critical performance demand in the particular application of digital imaging is placed on the edge resolution that is defined as the smallest detectable displacement of an edge from its image acquired in digital from. As the critical feature size of integrated circuit patterns reaches below 0.35 micrometers, the edge resolution is required to be less than 0.01 micrometers. This requirement is so stringent that fundamental behaviors of digital optical imaging need to be explored especially for the precision coordinate metrology. Our investigation reveals that the edge resolution shows quasi-random characteristics, not being simply deduced from relevant opto-electronic system parameters. Hence, a stochastic upper bound analysis is made to come up with the worst edge resolution that can statistically well predict actual indeterminate edge resolutions obtained with high magnification microscope objectives.

  • PDF

The Study on Image Sensitivity Evaluation For Digital Radiography Image (디지털 방사선 투과영상의 식별도 평가 연구)

  • Park, S.K.;Lee, Y.H.
    • Journal of Power System Engineering
    • /
    • v.12 no.6
    • /
    • pp.70-77
    • /
    • 2008
  • The purpose of this study is to compare the quality of digital radiography image with that of classical film images for welded structure in power plants. The CMOS(Complementary Metal Oxide Semiconductor) flat panel detecter and Agfa D5 film are used to image flaw specimens respectively. In the test, CMOS flat panel detector has been determined to have a better image than that of film image. In the IQI(Image Quality Indicator) transmission test, one or two more line can be seen in digital image than in film image. Digital Radiography Test enabled to successfully detect all defects on the weld specimens fabricated with real reheat stem pipe and boiler tube as well. In the specific comparison test, Digital radiography test detected micro flaws in the size of 0.5 mm in length by 0.5 mm in depth. However, film test has limited it to 1.0 mm in length by 1.0 mm in depth. As a result of this study, digital radiography technology is estimated well enough to perform the inspection in the industry with far more cost effective way, compared to the classical film test.

  • PDF

Low-Power, All Digital Phase-Locked Loop with a Wide-Range, High Resolution TDC

  • Pu, Young-Gun;Park, An-Soo;Park, Joon-Sung;Lee, Kang-Yoon
    • ETRI Journal
    • /
    • v.33 no.3
    • /
    • pp.366-373
    • /
    • 2011
  • In this paper, we propose a low-power all-digital phase-locked loop (ADPLL) with a wide input range and a high resolution time-to-digital converter (TDC). The resolution of the proposed TDC is improved by using a phase-interpolator and the time amplifier. The phase noise of the proposed ADPLL is improved by using a fine resolution digitally controlled oscillator (DCO) with an active inductor. In order to control the frequency of the DCO, the transconductance of the active inductor is tuned digitally. The die area of the ADPLL is 0.8 $mm^2$ using 0.13 ${\mu}m$ CMOS technology. The frequency resolution of the TDC is 1 ps. The DCO tuning range is 58% at 2.4 GHz and the effective DCO frequency resolution is 0.14 kHz. The phase noise of the ADPLL output at 2.4 GHz is -120.5 dBc/Hz with a 1 MHz offset. The total power consumption of the ADPLL is 12 mW from a 1.2 V supply voltage.

EXPERIMENTAL STUDY ON QUANTITATIVE EVALUATION OF FILM-BASED DIGITAL IMAGING SYSTEM (방사선사진용 디지털 영상시스템의 정량적 평가에 관한 실험적 연구)

  • Cho Heang-Hee;Kim Eun-Kyung
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.24 no.1
    • /
    • pp.137-147
    • /
    • 1994
  • A digital imaging system using Machintosh Ⅱ ci computer, high resolution Sony XC-77 CCD camera, Quickcapture Frame Grabber Board was evaluated for quantitative analysis of standardized periapical film with aluminum step wedge. The results were as follows: 1. Correlation between Al thickness and gray level was high-positively associated(r²=0.99, p<0.001). 2. Correlation between measured weight of experimental lesion and estimated relative lesion volume by digital subtracted radiography was also high-positively associated (r²=0.98, p<0.001). 3. As exposure time was increased, mean gray level was decreased(p<0.01) and slope of regression line between Al thickness and gray level was also decreased (p<0.01). And when the exposure time was shorter than 0.2 second, the value of r² was relatively low. On the basis of the above results, it is considered that this digital imaging system using a Macintosh Ⅱ ci computer & a high resolution CCD monochrome camera will be useful in evaluating digitized image from standardized periapical film quantitatively.

  • PDF

A 10-bit 10-MS/s SAR ADC with a Reference Driver (Reference Driver를 사용한 10비트 10MS/s 축차근사형 아날로그-디지털 변환기)

  • Son, Jisu;Lee, Han-Yeol;Kim, Yeong-Woong;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2317-2325
    • /
    • 2016
  • This paper presents a 10 bit successive approximation register (SAR) analog-to-digital converter (ADC) with a reference driver. The proposed SAR ADC consists of a capacitive digital-to-analog converter (CDAC), a comparator, a SAR logic, and a reference driver which improves the immunity to the power supply noise. The reference driver generates the reference voltages of 0.45 V and 1.35 V for the SAR ADC with an input voltage range of ${\pm}0.9V$. The SAR ADC is implemented using a $0.18-{\mu}m$ CMOS technology with a 1.8-V supply. The proposed SAR ADC including the reference driver almost maintains an input voltage range to be ${\pm}0.9V$ although the variation of supply voltage is +/- 200 mV. It consumes 5.32 mW at a sampling rate of 10 MS/s. The measured ENOB, DNL, and INL of the ADC are 9.11 bit, +0.60/-0.74 LSB, and +0.69/-0.65 LSB, respectively.

A Convergence Study on the Changes of Awareness and Preference according to the Clinical Application Experience of Digital Intraoral Scanners in Dental Hygienists (디지털 구강스캐너 임상적용 경험에 따른 치과위생사의 인지도 및 선호도 변화에 관한 융합연구)

  • Jang, Kyeung-Ae;Heo, Seong-Eun;Kang, Hyun-Kyung;Lee, Sook-Jeong
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.7
    • /
    • pp.135-140
    • /
    • 2018
  • This study aimed to determine the changes of awareness and preference of dental hygienists according to the experience of using a digital intraoral scanner through a convergence study. Data collected by an online survey for dental hygienists in Busan, Gyeongnam and Gyeongbuk were analyzed by SPSS 24.0 program. When dental hygienists had an experience of using a digital intraoral scanner, the awareness and preference of digital intraoral scanners were significantly higher. The experience of using a digital intraoral scanner showed a positive correlation with the clinical application experience of digital intraoral scanners; the clinical application experience of digital intraoral scanners, with the awareness of digital intraoral scanners; and the awareness of digital intraoral scanners, with the preference of digital intraoral scanners. In conclusion, the dental hygienist's experience in clinical application of digital intraoral scanners is expected to increase the awareness and preference, resulting in the improvement of dental hygienists' work ability. Therefore, it is believed that continuous education and learning about digital oral scanners are needed.

A Class-D Amplifier for a Digital Hearing Aid with 0.015% Total Harmonic Distortion Plus Noise

  • Lee, Dongjun;Noh, Jinho;Lee, Jisoo;Choi, Yongjae;Yoo, Changsik
    • ETRI Journal
    • /
    • v.35 no.5
    • /
    • pp.819-826
    • /
    • 2013
  • A class-D audio amplifier for a digital hearing aid is described. The class-D amplifier operates with a pulse-code modulated (PCM) digital input and consists of an interpolation filter, a digital sigma-delta modulator (SDM), and an analog SDM, along with an H-bridge power switch. The noise of the power switch is suppressed by feeding it back to the input of the analog SDM. The interpolation filter removes the unwanted image tones of the PCM input, improving the linearity and power efficiency. The class-D amplifier is implemented in a 0.13-${\mu}m$ CMOS process. The maximum output power delivered to the receiver (speaker) is 1.19 mW. The measured total harmonic distortion plus noise is 0.015%, and the dynamic range is 86.0 dB. The class-D amplifier consumes 304 ${\mu}W$ from a 1.2-V power supply.