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ABSTRACT

The semiconductor industry relies on digital optical imaging for the overlay metrology of integrated circuit
patterns. One critical performance demand in the particular application of digital imaging is placed on the edge
resolution that is defined as the smallest detectable displacement of an edge from its image acquired in digital
from. As the critical feature size of integrated circuit patterns reaches below 0.35 micrometers, the edge resolution
is required to be less than 0.01 micrometers. This requirement is so stringent that fundamental behaviors of digital
optical imaging need to be explored especially for the precision coordinate metrology. Our investigation reveals
that the edge resolution shows quasi-random characteristics, not being simply deduced from relevant opto-electronic
system parameters. Hence, a stochastic upper bound analysis is made to come up with the worst edge resolution
that can statistically well predict actual indeterminate edge resolutions obtained with high magnification microscope
objectives.

Key Words : Digital optical imaging, edge resolution, worst upper bound edge resolution, overlaymetrology,
microscope objectives.
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As the circuit feature size reduces to 0.18 mm,
the projected metrology tool budget should be in the
order of 10 nm or less. This stringent requirement
places new demands on the overlay measurement
capabilities so that thorough understanding on the
ultimate resolution limit of optical digital imaging in
edge location becomes necessary.

Digital optical imaging for the overlay
metrology is performed using four basic components
illustrated in Figure 2; the illumination optics with a
light source, the imaging objective, the electronic
image acquiring device, and a digital computer for
image data processing.
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Fig. 2 Basic configuration of dlgltal 1magmg system

In this digital imaging system, the edge resolution
is defined as the smallest variation of the edge
position that is detectable from the output signal
finally obtained in digital form. The edge resolution
becomes meaningful not only in describing the output
signal sensitivity but also in predicting the ultimate
measurement uncertainty of digital optical imaging in
locating pattern edges. One intuitive form of
expressing the edge resolution is the so called
effective pixel resolution, which is simply obtained by
dividing the actual one pixel size by the magnification
of the objective. This term in fact represents the
effective pixel size being reflected on the object
plane, but it hardly provides a precise estimation for
the measurement resolution since it excludes the
image resolving characteristics of the objective and
the quantization effects of the image acquiring
electronics. Consequently, experience proves that the
effective pixel resolution usually provides an
inaccurate underestimation that usually turns out to be
far worse than actual resolutions practically achieved.

2. Measurement resolution

Figure 3 schematically illustrates the processing

sequences through which the digital image of a line
edge is acquired.
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Fig. 3 Digital image sampling process

A representative single line edge is located at the
position of x= x, on the object plane. The
illumination is assumed to be perfectly incoherent for
convenience of analysis. Then, the image intensity
distribution of the line edge is obtained in the
normalized form of

I(x'—mxe)=—%— IS[ 471'N “(x'—m x,)]
——}rcos[ zm”(x'—mxe)]/
(A2 (¢ m x.0) ()

in which x' denotes the image coordinate; No and m
the numerical aperture and magnification of the
objective, respectively; A the mean wavelength of
illumination light; and Si[% ] the sine integral of § .

Being affected by light diffraction, the intensity
distribution of Eq.(1}) becomes a smoothed profile
spanning multiple pixels as graphically shown in
Figure 4.

o7 Gaussian Image
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Y
Fig. 4 Normalized intensity profile of the edge under
incoherent illumination
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The Gaussian image point of the line edge is

found at x' = mxe , where its corresponding
normalized intensity level becomes always 0.5. A
CCD array discretely samples the intensity profile,

whose analog output from each pixel is described as

Sixd= [ Kx—mxdip-rad. @)

In the above, the subscript j represents the pixel
index; p the pixel pitch; and r(% ) the point spread
function of the pixels that may be approximated as
the rectangular function of

_ Lk 3
&) 5 Recf] P 1 3)
The
analog-to-digital converter, whose output becomes a
gray level integer of

sampled signal is then quantized by an

Gi(x)=infk S;( x)]. “
The function int[% ] truncates the decimal fraction of
§ . Thus the output Gj(xe) becomes an integer
ranging from 0 to k. .

is defined as the
smallest variation of edge position that is detectable
from the output signal obtained in digital form. More
specifically, it means the minimum displacement of

Now, the edge resolution

the edge position that causes the change of unit gray
level in any of Gj(xe) for j = ..., -1, 0, 1, ... To
derive the edge resolution in an explicit form, two

variables 8 ? and ¢ ] are defined for each pixel such

that §? represents the displacement of the edge

position to be induced in the positive x-direction to
bring about unit change in Gj(xe), while & 7 the
displacement in the negative x-direction for the same

purpose. As depicted in Figure 5, the two variables
are obtained as

1- D;(x,)

D/(xe) and § "= PR
i e

85)2 kS ;(x.) ; &)
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Fig. 5 Derivation of &7,

where Dj(xe) represents the truncated fraction of
kSj(xe) during the quantization process, i.e.,
Dj(xe) = kSj(xe) - Gj(xe). 6)
In Eq.(5), Sj'(xe) denotes the partial derivative of

Sj(xe) with respect to xe. This can be derived from
Eq.(2) such as

_ 0 SiCx,)

Sj'(xe) i

= lm x ~ip+ L) —Km x .~ jp—5)]
)

Each pixel has different values of 67 and 6 7,
depending on its own Dj(xe) and Sj(xe). Among all

8% let be 6%, the smallest, ie.

8 bwm=Minl &7 =Mz'n[M].

£S, (%) ®)

Then &%, becomes the minimum displacement of

the edge position to be induced in the positive
x-direction to produce one gray level change in a
most sensitive pixel. Similarly, another displacement
defined

S minls in negative x-direction such as

_D;( xe)

6 = Minl 8 71 = Minl o 220 ©)
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Consequently, as long as the edge position stays
within the range of xe - § 5, < X < xe + &4, the

whole digital image data remain unchanged. Hence,
the edge resolution can be deduced as

R(xe) = & pnt all,nin
_ D;(x,) - D;(x.)
Minl 505 )]+M"[ FS (x.) ©

(10)

Now it is noted that the edge resolution R(xe)
does not come out as a constant but varies with the
edge position xe. in addition, its variation with xe
becomes highly nonlinear due to the operation of
Min[ - ] performed on multiple pixel data. Figure 6
shows a typical example computed for a specific
opto-electronic  configuration, in which the edge
resolution was plotted against xe over one effective
pixel pitch interval of p/m. The computed edge
resolution repeats its pattern with a period of p/m as
xe further increases or decreases. It is clearly seen
that the result tends to oscillate too severely to be
represented by a constant, exhibiting a quasi-stochastic
behavior as being presented by the scattered dots in
the figure. It would therefore be more meaningful to
describe the edge resolution in statistical terms of its

mean along wiih standard deviation.
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Fig. 6 Edge resolution and its definite upper

bound over one pixel range

3. Stochastic approach

The first step to treat the edge resolution in
statistical way is to find its appropriate probability
distribution function. For this, let us consider the
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interval &,= & /+ & }, of the j-th pixel as indicated
in Figure 5. In fact, the interval §; represents the
individual edge resolution when only the j-th pixel is
considered for locating the edge. In other words,
during the interval &, the occurrence probability of
the event that Gj(xe) would change its value is unity.

From Eq.(5), the interval §; is obtained as

8= (11)

1
ES i(xo)"
Now that the gray level change of Gj(xe) happens
once per interval, §; the expected frequency of this

event over unit interval becomes

fim— =k S () (12)

i

This consideration is extended to include all the

pixels concerned, so that the total expected frequency

of this event over unit interval becomes the
summation of £, , ie.
f=2f= kRS (%0, (13)
Or, by substituting Eq.(7) into Eq.13), the total
expected frequency is determined as
f=EZS (2= "R [ (0) ~ (= o0)]

= 7 [1-0)= 2% (14)

If it is assumed that occurrence of each event is
independent of one another, then the probability
function of R(xe) may be assumed to be ‘an

exponential distribution of
Pr{R(x,)<r1=1—exp(~ 2 ). (15)

Accordingly, the mean resolution Rm and standard
deviation ¢ are determined, respectively, such as
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m__ *© dP T

R™= [ L iy

and

o= R™*dr (16)
It is noted that the exponential distribution

produces the standard deviation identical to the mean.
From these two statistical terms, the upper bound of
the edge resolution is taken as the value of (Rm +5
0 ) which guarantees 99.8 per cent reliability, i.e.,

_6p. 2
R(x )< mk"R

an

Hereafter, R ! is referred to as the probabilistic upper

bound of the edge resolution. From practical point of
view, the upper bound is meaningful as it statistically
describes the worst limit of the edge resolution. It is
worth noting that the probabilistic upper bound is
decided only by three system parameters; p the pixel
pitch, m the magnification, and k the number of
quantization Other parameters such as the
numerical aperture No or the light wavelength A

have no effects on the probabilistic upper bound.

level.

In addition to the probabilistic upper bound,
another upper bound may also be considered which in
fact can be derived in a deterministic way. The
expression of Eq.(10) may be extended to an
inequality condition of

_ Mz~n[M] + Mg L=z

R(x.) £S, (%) £S, (%)

D;(x)+1—D,;(x,) ]
kS (x,)

<Min[

st[m] (18)

This means that the edge resolution R(xe) considering
all the pixels becomes always smaller than any
individual edge resolution of a single pixel. Hence,
the upper bound of R(xe) may be regarded as the
minimum among all the individual edge resolutions,
which can be written as
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R p= (19)

1
k Max[ S;'(x)]"

When the illumination is incoherent, the maximum
of Sj'(xe) always occurs at the Gaussian image point
of the line edge, i.e. X' = mxe, which corresponds to
the point § =0 in the image profile given in Figure 4.
Therefore, using Eq.(7), R § is explicitly obtained as

R %= L

(20
mk[I(mxe+—§)—I(mx,_,—

)
o)1

Back in Figure 6, R } is presented in the solid
line. It is seen that R} also varies with xe like
R(xe) and reaches its maximum when xe = Z(p/m).

The maximum, denoted by R J is given as

—_—b

= 21
SV RN () @D
Now R ¥ is defined as the definite upper bound of

the edge resolution, in contrast with R ¥ previously
defined the upper bound. By
substituting Eq.(1) into Eq.(21), R Y is obtained in a

as probabilistic

deterministic form of

U _b_
R”ﬁcmk’
where
_ 47 N, A7 N, !
Cconist- 0o gy cop (A ) (A2 0 )
(22)

4. Worst edge resolution

So far, two upper bound limits of edge resolution
have been derived; the probabilistic ® § of Eq.(17)
and deterministic R § of Eq.(22). Now it becomes

necessary to define the worst edge resolution that can
predict actual edge resolutions more reliably.

if Rg <R g, it is rational to take the definite
upper bound R J as the worst. On the contrary, in

case R § < R J, the probabilistic upper bound R ¥
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would be more appropriate. Consequently, the worst
resolution, denoted by RW, is decided as

RY=Min(R 5, R ). (23)
The critical condition under which R & becomes
equal to R ¥ is found by equating Eq.(17) to Eq.(22)

such as

4n N, !

Ar N,
= )

Am

47 N,
Am

=8.
24

x{Si ] — cos( »/(

This can be readily solved by numerical computation
to give out the condition of

Nop

Am

=0.085. (25)

This means that if Nop/(A m) is larger than 0.085 ,
the definite upper bound R 5 is taken as RWand
vice versa. In most configurations of digital imaging
using commercially available microscope objectives,
the value of Nop/(A m) turns out to be larger than
0.085. Therefore the worst edge resolution can be
safely given by
W_ pU_ ~_D_
RY=Rp=C 7. (26)
Table 2 shows some exemplary worst edge

resolutions that were computed using Eq.(26) with six
different objectives.

Table 2 Some typical values of worst edge reolution

Probe # #1 | #® #3 # #5 #6

NA 0.025 | 0.055 | 0.14 | 042 0.55 0.7

magnification 1 2 5 20 50 100
worst edge res.(um)* | 0.109 | 0.0542 | 0.022 | 0.0055 | 0.00253 | 0.00172

*All the above resolutions were computed with respect to a CCD camera of 12.6um
spacing, with =550 nm

It is worth noting that the worst resolution
becomes less than 0.01 micrometer for the objective
of 20X magnification with 0.42 NA, and further it
reaches 1.7 nm for the objective of 100X
magnification with 0.7 NA. Now, to verify this
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theoretical result, experiments were also performed
using the apparatus setup shown in Figure 7.
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Fig. 7 Experimental setup for resolution measurement

A knife edge was used as a measuring object,
whose lateral movement is precisely controlled using
a piezoelectric actuator and a heterodyne laser
interferometer with a nanometer resolution. Figure 8
shows a typical intensity profile of the knife edge that
was monitored from a single pixel of the CCD
camera while moving the knife edge by approximately
0.05 micrometer step. The measured data were
compared with the theoretical variation of the gray

level computed using Eq.(4).

Normalized
gray level

10

Solid line: by simulation using eg. {4 )
Dot : by experiment
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Edge position (um)
Fig. 8 Output variations of a pixel with respect to
edge point movement

It is seen that the measured data are well
predicted by the theoretical estimation, which is
presented by the solid line in the figure. Now, actual
edge resolutions were measured for six different
objectives installed in the same experimental setup of
Figure 7. Table 3 summarizes the comparisons made
between the theoretical
which are in good agreements with about 10 %

and experimental results,
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discrepancy.

Table 3 Experimental result of worst edge resolution

Probe # #1 #2 #3 #4
NA 0.025 0.055 0.14 0.42
RY theoretical (yum) 0.109 0.0542 0.022 0.0055

0.126 0.056 0.027 0.006
13% 3%

Rj  experimental {m)

% of error 18% 8%

5. Conclusions

The edge resolution of digital optical imaging has
been defined as the minimum displacement of the
edge position that is detectable from the acquired
digital image of the line edge. This term is found
useful in predicting the actual measurement sensitivity
and uncertainty of digital optical imaging especially in
the overlay control of integrated circuit patterns. The
edge resolution is deterministic, but it shows a
that be
described in terms of relevant opto-electronic system

quasi-random behavior can not simply
parameters. Hence a stochastic approach has been
made to describe the indeterminate edge resolution in
term of the worst upper bound. Computer simulation
and experimental results proves that the worse edge
resolution can be usefully used in predicting actual

resolutions obtained with microscope objectives.
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