• Title/Summary/Keyword: differential algebraic equations

Search Result 137, Processing Time 0.025 seconds

Analysis of Flow Field in Cavity Using Finite Analytic Method (F.A.M.을 이용한 공동 내부의 유동해석)

  • 박명규;정정환;김동진
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.46-53
    • /
    • 1991
  • In the present study, Navier-Stokes equation is numerically solved by use of a Finite analytic method to obtain the 2-dimensional flow field in the square cavity. The basic idea of F.A.M. is the incorporation of local analytic solutions in the numerical solution of linear or non-linear partial differential equations. In the F.A.M., the total problem is subdivided into a number of all elements. The local analytic solution is obtained for the small element in which the governing equation, if non-linear, to be linearized. The local analytic solutions are then expressed in algebraic form and are overlapped to cover the entire region of the problem. The assembly of these local analytic solutions, which still preserve the overall nonlinearity of the governing equations, results in a system of linear algebraic equations. The system of algebraic equations is then solved to provide the numerical solutions of the total problem. The computed flow field shows the same characteristics to physical concept of flow phenomena.

  • PDF

AN UNSTRUCTURED MESH FINITE VOLUME METHOD FOR MODELLING SALTWATER INTRUSION INTO COASTAL AQUIFERS

  • Liu, F.;Turner, I.;Anh, V.
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.561-577
    • /
    • 2002
  • In this paper, a two-dimensional finite volume unstructured mesh method (FVUM) based on a triangular background interpolation mesh is developed for analysing the evolution of the saltwater intrusion into single and multiple coastal aquifer systems. The model formulation consists of a ground-water flow equation and a salt transport equation. These coupled and non-linear partial differential equations are transformed by FVUM into a system of differential/algebraic equations, which is solved using backward differentiation formulas of order one through five. Simulation results are compared with previously published solutions where good agreement is observed.

The Design of MRAC using Block Pulse Functions (블럭펄스함수를 이용한 MRAC설계)

  • Kim, Jin-Tae;Kim, Tai-Hoon;Ahn, Pius;Lee, Myung-Kyu;Shim, Jae-Sun;Ahn, Doo-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2252-2254
    • /
    • 2001
  • This paper proposes a algebraic parameter determination of MRAC (Model Reference Adaptive Control) controller using block Pulse functions and block Pulse function's differential operation. Generally, adaption is performed by solving differential equations which describe adaptive low for updating controller parameter. The proposes algorithm transforms differential equations into algebraic equation, which can be solved much more easily in a recursive manner. We believe that proposes methods are very attractive and proper for parameter estimation of MRAC controller on account of its simplicity and computational convergence.

  • PDF

GEGENBAUER WAVELETS OPERATIONAL MATRIX METHOD FOR FRACTIONAL DIFFERENTIAL EQUATIONS

  • UR REHMAN, MUJEEB;SAEED, UMER
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1069-1096
    • /
    • 2015
  • In this article we introduce a numerical method, named Gegenbauer wavelets method, which is derived from conventional Gegenbauer polynomials, for solving fractional initial and boundary value problems. The operational matrices are derived and utilized to reduce the linear fractional differential equation to a system of algebraic equations. We perform the convergence analysis for the Gegenbauer wavelets method. We also combine Gegenbauer wavelets operational matrix method with quasilinearization technique for solving fractional nonlinear differential equation. Quasilinearization technique is used to discretize the nonlinear fractional ordinary differential equation and then the Gegenbauer wavelet method is applied to discretized fractional ordinary differential equations. In each iteration of quasilinearization technique, solution is updated by the Gegenbauer wavelet method. Numerical examples are provided to illustrate the efficiency and accuracy of the methods.

PARALLEL OPTIMAL CONTROL WITH MULTIPLE SHOOTING, CONSTRAINTS AGGREGATION AND ADJOINT METHODS

  • Jeon, Moon-Gu
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.215-229
    • /
    • 2005
  • In this paper, constraint aggregation is combined with the adjoint and multiple shooting strategies for optimal control of differential algebraic equations (DAE) systems. The approach retains the inherent parallelism of the conventional multiple shooting method, while also being much more efficient for large scale problems. Constraint aggregation is employed to reduce the number of nonlinear continuity constraints in each multiple shooting interval, and its derivatives are computed by the adjoint DAE solver DASPKADJOINT together with ADIFOR and TAMC, the automatic differentiation software for forward and reverse mode, respectively. Numerical experiments demonstrate the effectiveness of the approach.

Curved beam through matrices associated with support conditions

  • Gimena, Faustino N.;Gonzaga, Pedro;Valdenebro, Jose V.;Goni, Mikel;Reyes-Rubiano, Lorena S.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.3
    • /
    • pp.395-412
    • /
    • 2020
  • In this article, the values of internal force and deformation of a curved beam under any action with the firm or elastic supports are determined by using structural matrices. The article presents the general differential formulation of a curved beam in global coordinates, which is solved in an orderly manner using simple integrals, thus obtaining the transfer matrix expression. The matrix expression of rigidity is obtained through reordering operations on the transfer notation. The support conditions, firm or elastic, provide twelve equations. The objective of this article is the construction of the algebraic system of order twenty-four, twelve transfer equations and twelve support equations, which relates the values of internal force and deformation associated with the two ends of the directrix of the curved beam. This final algebraic system, expressed in matrix form, is divided into two subsystems: twelve algebraic equations of internal force and twelve algebraic equations of deformation. The internal force and deformation values for any point in the curved beam directrix are determined from these values in the initial position. The five examples presented show how to apply the matrix procedures developed in this article, whether they are curved beams with the firm or elastic support.

Exact Static Element Stiffness Matrix of Nonsymmetric Thin-walled Elastic Curved Beams (비대칭 박벽 탄성 곡선보의 엄밀한 정적 요소강도행렬)

  • Yoon Hee-Taek;Kim Moon-Young;Kim Young-Ki
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1165-1170
    • /
    • 2005
  • In order to perform the spatial buckling analysis of the curved beam element with nonsymmetric thin-walled cross section, exact static stiffness matrices are evaluated using equilibrium equations and force-deformation relations. Contrary to evaluation procedures of dynamic stiffness matrices, 14 displacement parameters are introduced when transforming the four order simultaneous differential equations to the first order differential equations and 2 displacement parameters among these displacements are integrated in advance. Thus non-homogeneous simultaneous differential equations are obtained with respect to the remaining 8 displacement parameters. For general solution of these equations, the method of undetermined parameters is applied and a generalized linear eigenvalue problem and a system of linear algebraic equations with complex matrices are solved with respect to 12 displacement parameters. Resultantly displacement functions are exactly derived and exact static stiffness matrices are determined using member force-displacement relations. The buckling loads are evaluated and compared with analytic solutions or results by ABAQUS's shell element.

  • PDF

Fuzzy finite element method for solving uncertain heat conduction problems

  • Chakraverty, S.;Nayak, S.
    • Coupled systems mechanics
    • /
    • v.1 no.4
    • /
    • pp.345-360
    • /
    • 2012
  • In this article we have presented a unique representation for interval arithmetic. The traditional interval arithmetic is transformed into crisp by symbolic parameterization. Then the proposed interval arithmetic is extended for fuzzy numbers and this fuzzy arithmetic is used as a tool for uncertain finite element method. In general, the fuzzy finite element converts the governing differential equations into fuzzy algebraic equations. Fuzzy algebraic equations either give a fuzzy eigenvalue problem or a fuzzy system of linear equations. The proposed methods have been used to solve a test problem namely heat conduction problem along with fuzzy finite element method to see the efficacy and powerfulness of the methodology. As such a coupled set of fuzzy linear equations are obtained. These coupled fuzzy linear equations have been solved by two techniques such as by fuzzy iteration method and fuzzy eigenvalue method. Obtained results are compared and it has seen that the proposed methods are reliable and may be applicable to other heat conduction problems too.

Numerical Solution of Riccati Differential Equation in Optimal Control Theory (최적제어이론과 관련된 "리카티" 미분방정식의 수식해)

  • 경규학
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.9 no.2
    • /
    • pp.28-33
    • /
    • 1984
  • In this paper some procedures are given whereby an analytic solution may be found for the Riccati differential equation and algebraic Riccati equation in optimal control theory. Some iterative techniques for solving these equations are presented. Rate of convergence and initialization of the iterative processes are discussed.

  • PDF

High precision integration for dynamic structural systems with holonomic constraints

  • Liu, Xiaojian;Begg, D.W.;Devane, M.A.;Zhong, Wanxie
    • Structural Engineering and Mechanics
    • /
    • v.5 no.3
    • /
    • pp.283-295
    • /
    • 1997
  • This paper presents a high precision integration method for the dynamic response analysis of structures with holonomic constraints. A detail recursive scheme suitable for algebraic and differential equations (ADEs) which incorporates generalized forces is established. The matrix exponential involved in the scheme is calculated precisely using $2^N$ algorithm. The Taylor expansions of the nonlinear term concerned with state variables of the structure and the generalized constraint forces of the ADEs are derived and consequently, their particular integrals are obtained. The accuracy and effectiveness of the present method is demonstrated by two numerical examples, a plane truss with circular slot at its tip point and a slewing flexible cantilever beam which is currently interesting in optimal control of robot manipulators.