• Title/Summary/Keyword: differential algebra

Search Result 44, Processing Time 0.022 seconds

A Case Study of Perceptions on Storytelling Mathematics Textbooks with Computer Algebra System (스토리텔링 수학 교과서에서 공학적 도구의 활용과 미분적분학 단원에 관한 개발 사례)

  • Lee, Sang-Gu;Shin, Joonkook;Kim, Kyung-Won
    • Communications of Mathematical Education
    • /
    • v.28 no.1
    • /
    • pp.65-79
    • /
    • 2014
  • The present study seeks to provide an easy path to differential perceptions of students at the upper high school level by applying a story telling method and also, characteristically, to earn some time for class discussion by reducing learning time for simple calculational procedure through Computer Algebra System(CAS) tools. This study offers a clear example of storytelling textbooks through Sage. Hence, the study aims at enabling students who have practiced contents with Sage tools to deal with diverse and complicated calculation problems, if they learn to build up mathematical formulas for those problems.

ALGEBRAIC STRUCTURES IN A PRINCIPAL FIBRE BUNDLE

  • Park, Joon-Sik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.3
    • /
    • pp.371-376
    • /
    • 2008
  • Let $P(M,G,{\pi})=:P$ be a principal fibre bundle with structure Lie group G over a base manifold M. In this paper we get the following facts: 1. The tangent bundle TG of the structure Lie group G in $P(M,G,{\pi})=:P$ is a Lie group. 2. The Lie algebra ${\mathcal{g}}=T_eG$ is a normal subgroup of the Lie group TG. 3. $TP(TM,TG,{\pi}_*)=:TP$ is a principal fibre bundle with structure Lie group TG and projection ${\pi}_*$ over base manifold TM, where ${\pi}_*$ is the differential map of the projection ${\pi}$ of P onto M. 4. for a Lie group $H,\;TH=H{\circ}T_eH=T_eH{\circ}H=TH$ and $H{\cap}T_eH=\{e\}$, but H is not a normal subgroup of the group TH in general.

  • PDF

Explicit Motion of Dynamic Systems with Position Constraints

  • Eun, Hee-Chang;Yang, Keun-Hyuk;Chung, Heon-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.538-544
    • /
    • 2003
  • Although many methodologies exist for determining the constrained equations of motion, most of these methods depend on numerical approaches such as the Lagrange multiplier's method expressed in differential/algebraic systems. In 1992, Udwadia and Kalaba proposed explicit equations of motion for constrained systems based on Gauss's principle and elementary linear algebra without any multipliers or complicated intermediate processes. The generalized inverse method was the first work to present explicit equations of motion for constrained systems. However, numerical integration results of the equation of motion gradually veer away from the constraint equations with time. Thus, an objective of this study is to provide a numerical integration scheme, which modifies the generalized inverse method to reduce the errors. The modified equations of motion for constrained systems include the position constraints of index 3 systems and their first derivatives with respect to time in addition to their second derivatives with respect to time. The effectiveness of the proposed method is illustrated by numerical examples.

Meromorphic functions, divisors, and proective curves: an introductory survey

  • Yang, Ko-Choon
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.569-608
    • /
    • 1994
  • The subject matter of this survey has to do with holomorphic maps from a compact Riemann surface to projective space, which are also called algebrac curves; the theory we survey lies at the crossroads of function theory, projective geometry, and commutative algebra (although we should mention that the present survey de-emphasizes the algebraic aspect). Algebraic curves have been vigorously and continuously investigated since the time of Riemann. The reasons for the preoccupation with algebraic curves amongst mathematicians perhaps have to do with-other than the usual usual reason, namely, the herd mentality prompting us to follow the leads of a few great pioneering methematicians in the field-the fact that algebraic curves possess a certain simple unity together with a rich and complex structure. From a differential-topological standpoint algebraic curves are quite simple as they are neatly parameterized by a single discrete invariant, the genus. Even the possible complex structures of a fixed genus curve afford a fairly complete description. Yet there are a multitude of diverse perspectives (algebraic, function theoretic, and geometric) often coalescing to yield a spectacular result.

  • PDF

Three Characteristic Beltrami System in Even Dimensions (I): p-Harmonic Equation

  • Gao, Hongya;Chu, Yuming;Sun, Lanxiang
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.3
    • /
    • pp.311-322
    • /
    • 2007
  • This paper deals with space Beltrami system with three characteristic matrices in even dimensions, which can be regarded as a generalization of space Beltrami system with one and two characteristic matrices. It is transformed into a nonhomogeneous $p$-harmonic equation $d^*A(x,df^I)=d^*B(x,Df)$ by using the technique of out differential forms and exterior algebra of matrices. In the process, we only use the uniformly elliptic condition with respect to the characteristic matrices. The Lipschitz type condition, the monotonicity condition and the homogeneous condition of the operator A and the controlled growth condition of the operator B are derived.

  • PDF

Trajectory Controller Design of Mobile Robot based on Back-stepping Procedure

  • Jaewon Kho;Lee, Kicheol;Park, Mignon
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1618-1621
    • /
    • 2002
  • In this paper, the constructive modeling procedure of nonholonomic mobile robot system is carried out with the help of controllability Lie algebra used in differential geometry field, and their geometrical properties are also analyzed. And, a new trajectory controller is suggested to guarantee its convergence to reference trajectory. Design procedure of the suggested trajectory controller is back-stepping scheme which was introduced recently in nonlinear control theory. The performance of the proposed trajectory controller is verified via computer simulation. In the simulation the trajectory controller is applied to differentially driven mobile robot system on the assumption that the trajectory planner be given.

  • PDF

Trajectory Controller Design of Mobile Robot based on Back-stepping Procedure (백 스테핑을 이용한 이동 로봇의 경로 제어기의 설계)

  • Lee, Ki-Cheol;Kho, Jae-Won;Park, Min-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2787-2789
    • /
    • 2000
  • In this paper. the constructive modeling procedure of nonholonomic mobile robot system is carried out with the help of controllability Lie algebra used in differential geometry field. and their geometrical properties are also analyzed. And, a new trajectory controller is suggested to guarantee its convergence to reference trajectory. Design procedure of the suggested trajectory controller is back-stepping scheme which was introduced recently in nonlinear control theory. The performance of the proposed trajectory controller is verified via computer simulation. In the simulation the trajectory controller is applied to differentially driven robot system on the assumption that the trajectory planner be given.

  • PDF

Symbolic computation and differential quadrature method - A boon to engineering analysis

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.6
    • /
    • pp.713-739
    • /
    • 2007
  • Nowadays computers can perform symbolic computations in addition to mere number crunching operations for which they were originally designed. Symbolic computation opens up exciting possibilities in Structural Mechanics and engineering. Classical areas have been increasingly neglected due to the advent of computers as well as general purpose finite element software. But now, classical analysis has reemerged as an attractive computer option due to the capabilities of symbolic computation. The repetitive cycles of simultaneous - equation sets required by the finite element technique can be eliminated by solving a single set in symbolic form, thus generating a truly closed-form solution. This consequently saves in data preparation, storage and execution time. The power of Symbolic computation is demonstrated by six examples by applying symbolic computation 1) to solve coupled shear wall 2) to generate beam element matrices 3) to find the natural frequency of a shear frame using transfer matrix method 4) to find the stresses of a plate subjected to in-plane loading using Levy's approach 5) to draw the influence surface for deflection of an isotropic plate simply supported on all sides 6) to get dynamic equilibrium equations from Lagrange equation. This paper also presents yet another computationally efficient and accurate numerical method which is based on the concept of derivative of a function expressed as a weighted linear sum of the function values at all the mesh points. Again this method is applied to solve the problems of 1) coupled shear wall 2) lateral buckling of thin-walled beams due to moment gradient 3) buckling of a column and 4) static and buckling analysis of circular plates of uniform or non-uniform thickness. The numerical results obtained are compared with those available in existing literature in order to verify their accuracy.

Stability Analysis for the Deployment of Unmanned Surface Vehicles

  • Dharne, Avinash G.;Lee, Jaeyong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.159-165
    • /
    • 2015
  • Motion control schemes are generally classified into three categories (point stabilization, trajectory tracking, and path following). This paper deals with the problem which is associated with the initial deployment of a group of Unmanned Surface Vehicle (USVs) and corresponding point stabilization. To keep the formation of a group of USVs, it is necessary to set the relationship between each vehicle. A forcing functions such as potential fields are designed to keep the formation and a graph Laplacian is used to represent the connectivity between vehicle. In case of fixed topology of the graph representing the communication between the vehicles, the graph Laplacian is assumed constant. However the graph topologies are allowed to change as the vehicles move, and the system dynamics become discontinuous in nature because the graph Laplacian changes as time passes. To check the stability in the stage of deployment, the system is modeled with Kronecker algebra notation. Filippov's calculus of differential equations with discontinuous right hand sides is then used to formally characterize the behavior of USVs. The stability of the system is analyzed with Lyapunov's stability theory and LaSalle's invariance principle, and the validity is shown by checking the variation of state norm.