Trajectory Controller Design of Mobile Robot based on Back-stepping Procedure
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Abstract : In this paper, the constructive modeling
procedure of nonholonomic mobile robot system is
carried out with the help of controllability Lie algebra
used in differential geometry field, and their geometrical
properties are also analyzed. And, a new trajectory
controller is suggested to guarantee its convergence to
reference trajectory. Design procedure of the suggested
trajectory controller is back-stepping scheme which
was introduced recently in nonlinear control theory. The
performance of the proposed trajectory controller is
verified via computer simulation. In the simulation the
trajectory controller is applied to differentially driven
mobile robot system on the assumption that the
trajectory planner be given.

1. Introduction

Generally, the wheel-driven mobile robot systems, by
their structural property, have nonholonomic constraints.
The Brockett’s theorem says that such systems cannot
be stabilized to an equilibrium point by smooth and
time- invariant state feedback controllers[1]. Although
nonholonomic systems have been studied in classical
mechanics for more than 150 years, it is only recently
that the study of control problems for such systems
has been initiated(2,3]. The reason is as follows.
Constraints of nonholonomic systems are not integrable
and cannot be written as time derivatives of some
function of the generalized coordinates. Hence, nonlinear
approaches are required to solve the problems

In this paper, the constructive modeling procedure of
nonholonomic mobile robot systems is carried out with
the help of controllability ILie algebra wused in
differential geometry field, and their geometrical
properties are also analyzed. And, a new trajectory
controller is suggested to guarantee its convergence to
reference trajectory. Design procedure of the suggested
trajectory controller is back-stepping scheme which
was introduced recently in nonlinear control theory. The
back~stepping procedure guarantees the existence of
Lyapunov function to verify the stability of the overall
system, and provides alternative of the exXisting
feedback linearization techniquel4], which often
confronts the complexity of design procedure in MIMO
system and some problems to make worse system’s
performance. The design procedure of the trajectory
controller for mobile robot system is summarized as
follows; the kinematic model of a mobile robot is

transformed into the chained nonholonomic form via
coordinate transformation and its input change. and
then the chained nonholonomic system is used to
design the trajectory controller based on the
back-stepping procedure. The stability of the suggested
trajectory controller is guaranteed by the existence of
Lyapunov function and its asymptotical stability is also
proved by applying the Babalat’'s lemmal[5).

The performance of the proposed trajectory controller
is verified via computer simulation. In the simulation,
the trajectory controller is applied to differentially
driven mobile robot system on the assumption that the
trajectory planner be given.

2. Controller Design using Back-stepping
Scheme
In this chapter, the feedback controller design method
of the nonlinear system using back- stepping scheme is
proposed. Suppose that the controlled system is
represented by
(2.1a)

(2.1b)

x=Ff(x0)+g(x)
E=u
And suppose that smooth feedbak control

u=a(x), a(0)=0 where input is £&€R exist in
(2.1a) and (2.1a) satisfies following condition,

laws

LY (A + gRa(0]< ~ M) SOV2ER" 22

V:R" >R is positive definitive and radially
unbounded smooth function, W:R"—R
definitive or positive semi-definitive function.

First, if W(x) is positive definitive function, the
following function (2.3) is control Lyapunov function
the entire system, and thus there exists a feedback
controller u=a,(x, &) that globally and asymptotically

where
is positive

stabilizes at equilibrium point x=0, £ =0.

Vo(x, 0=V +3G- a)? @3

For a example of the stable feedback controller, there
is as follows.
w=—c(é=a(x)+-22(x) +2(nel - -E¥ (0g(x), >0

(2.4)
If W(x) is positive semi-definitive function, there
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exists a feedback control input u=a (x, &>0 that

satiesfies Va< — W(x, £ )<0 and becomes W(x, £)>0
when WAx) >0 or &+a(x). And the state variable

[x(HT,&(H]T of the overall feedback control system
converges to the largest invariant set contained in the
following set [6],

E,={[z7,8eR" ' Wx) =0}

Introducing the error variable z= & —a(x), the state
equation of the control system is given by

2= Ax) + g()alx) + 2]
i= u—-%%(x)[f(x) + g(£)(a(x) + )]

(2.5a)
(2.5b)

Eqution (2.5a) satisfies the assumption given by (2.2),
so using (22) the time derivative of the control
Lyapunov function V,(x, ) is given by

Vo =SY(r+ glat )+ el u—-22 (4 gla+2D)]
< W) + 2ol SL g+ u— 92 (f+ gl a+ 2])]

(2.6)
Thus selecting the control input % that satisfies
V, £ — Wi(x,&<— W(x), by the positive definitive
character of W, and LaSalle-Yoshizawa's theorem [5],

x, z and £ is globally bounded and W{x(£)) and 2(?
converge to 0 along the time #—¢0. And by the
LaSalle's theorem, it is guaranted that [x(H7T,&H]1T
converges to the largest invariant set contained in the
set E,={[x7,&TeRr"* | Wx)=0)}.

To satisfy the upper property, Va has to be negative

definitive function about z. Applying the control input

u given by (24) to the equation (2.6), there is as
follows.

V,<—Wx) ~t=—-W(x8<0 @7

If W(x) is positive definitive function, by the
LaSalle-Yoshizawa’s theorem, the equilibrium point
x=(0, 2=0 is globally and asymptotically stable. Thus
x=0,& =0 is also globally and asymptotically stable
because of z=¢&—a(x) and a(0)=0.

Now we extend that the controlled system has the
increased form by k integrator. Then the feedback
controller design of that system using back-stepping
scheme is proposed. In this case, the controlled system
can be written as

x=f(0)+g(x¢

5.12 52

: 28
Eio1= &,
5k=u

In the system given by (2.8), suppose that
£1,, &, are virtual inputs. And then applying
repeatedly the back-stepping procedure explained

previously, the Lyapunov function is given by

Va(xr élv."’ Ek)'__
Vo +4 Bl 6im ala £, €)1

(2.9)
Similarly selecting the control input # that satisfies

VaS“'Wa(x, &, £,1)<0, W) =0 when W,(x,
&, &) equals 0 and €,= a; (x, &,-, &;=1)

to all ¢ the state variable [x7(2),&(2), -, &xy]T of
the overall system is globally bounded and by the
LaSalle-Yoshizawa’s theorem converges to the largest
invariant set M, contained in the following set,

E,~{[x",&,,&1TeR"™* | Wx) =0,
Ei= a1 (x, &, &:)),i=1,h)

I Wx) is positive definitive function, x=0 is
globally and asymptotically stable by means of &;. It
means that equilibrium point x=0, & =-+=&,=0 can

be stable via control input w%. That is, to the system
contained with £ integrator, we can also see that the
feedback  controller  design using  back-stepping
procedure guarantees simultaneously the stability and
boundness of the overall system.

As examined above, in the case of the controller
design of nonlinear system using back-stepping
procedure always guarantees the stability of the overall
feedback system on each step.

3. Trajectory Controller Design of Mobile
Robot
Fig. 3.1 shows the appearance of differentially driven
mobie robot used in this experiment. This mobile robot
is Pioneer 1 made in Active Media Inc. The structure
of this mobile robot is composed of two fixed wheel
and one caster type wheel.

Camera

Gripper
]

mm
448 mm

145 mm
800 Tmm

Fig 3.1. Pioneer 1 mobile robot

The kinematic model of differentially driven mobie
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robot can be written as

x cos(9) 0
y| = sin(®) 0}[”] 3.1)
6 0 Yt e

where v is line velocity of mobile robot and w is
revolutionary angular velocity of mobile robot.

To the kinematic model of the mobile robot given by
(3.1), we perform the following diffeomorphism
coordinate transfomation (3.2) and input transfomation
(3.3).

X1 0 0 11
%2l = | cos(6) sin(8) 0] y] (32)
X3 sin(d) —cos(8) 0] 16

Uu=w

= o—a, (3.3)

Then the kinematic model of the mobile robot can be
transformed into the following chained nonholonomic
form.

X =1u

Xp=u (3.4)
2 2

X3 =X U

Thus the trajectory planner model of the mobile robot
is designed as follows.
x.1d= Uy
Xod= Uygy (35)
X3d= X22 U4
From the equation (3.4) and (3.5), the error dynamics is
given by
x:le:: Uy— U
X2e= U™ U
X3e= Xge U1t (U — uyg)

(36)

The trajectory control problem is identical with the
feedback controller design problem that makes the state
variable error converge to 0. Now we design the
nonlinear controller that asymptotically stabilizes the
equilibrium point of the error dynamics (3.6) using
back-stepping procedure. Applying the diffeomorphism

Oi(x;xs) 0 R"— R", we
can obtain new state variable (3.7) and state equation
(3.8).

coordinate transfomation

N=%3.~ (Xo.F+ %)% 1,

YVo=X29¢ (3.1
V3= Xe

3:’1 = Uy — U2Y3

V2= Uy — Ugg (3.8)

V3= Uy~ Uyg

From the equation (3.8), designing the controller using
back-stepping procedure, the controller is obtained as
follows.

U™ Ugg— Cy Yo~ U gV

(39)
Uy = U™ C3y3+ MUy

where c¢;, ¢y and ¢ are design variables. Applying the

equation (3.3) to (3.9),
transformed as follows.

the equation (39) can be

V= tpa— 29— i + xal uyg — cay3+
Yi{tpa— 252~ w1091)]
0= Uy~ C3¥3+ 371(2!2(1— Ca¥2— Ura¥y)
(3.10)
The velocity v and angular velocity @ of the mobile
robot are given by the composition of revolutionary
velocity at each wheel.
Synthesizing the procedure of the controller design,
the trajectory controller of the mobile robot proposed in
this paper is shown as Fig. 3.2.

Trajectory Planner

B

V,@ | Mobile || 9:(0.9,(1)

State
estimator |

Fig. 3.2. Block diagram of trajectory controller

4. Computer Simulation and Results
To verify the validity of the trajectory controller, we
perform the computer simulation. The trajectory used in
this simulation is given by table 4.1.

Table 4.1. Specification of trajectory used in simulation

Trajectory | Trajectory | initial | Average /;‘:1‘;’39;
name form position { velocity )
velocity
Rotational
; 0.1 m/s (0.2 rad/s
A motion (0.0,0) rad/

Suppose that initial posture of the mobile robot has
the error. The design variables used in the simulation
are as follows,

Cl=5, Cz=5, 6‘3=2

Fig. 4.1 shows the tracking features of the mobile
robot to the trajectory A. In this case, the trajectory is
generated for the mobile robot to do straight and
rotational motion repeatedly. After the mobile robot
converges to reference trajectory, we can see that the
mobile robot performs perfect tracking if the change of
curvature in the trajectory is bounded. The controller
designed by back-stepping scheme is a little slow in
the converging speed than Kanayama's controller but
does'nt generate overshoot in the trajectory tracking.
Fig. 4.1(b) shows the state variable error of the mobile
robot on tracking the trajectory A. Fig. 4.1(c) shows
the control input of the mobile robot on tracking the
trajectory A.
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Fig. 4.1(a) Tracking of mobile robot to trajectory A
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Fig. 4.1(c) Control input of mobile robot on tracking
the trajectory A

If the gain values of the controller ¢;,¢; and c¢3 are

low, we can see that the converging speed to the
trajectory may be slow. On the other hand, in
proportion as the gain values are high, the control
values are increased and the speed of response will be
fast.

5. Conclusion

The dynamic characteristics of a mobile robot was
analyzed through the analysis of the nonholonomic
system. And, a new trajectory controller of a mobile
robot was suggested to guarantee its convergence to
reference trajectory. Design procedure of the suggested
trajectory controller is back-stepping scheme which
was introduced recently in nonlinear control theory. The
back-stepping procedure guarantees the existence of
Lyapunov function to verify the stability of the overall
system. The kinematic model of a mobile robot was
transformed into the chained nonholonomic form via
coordinate transformation and its input change. And
then the chained nonholonomic system was used to
design the trajectory controller based on the
back-stepping procedure.

The performance of the proposed trajectory controller
was verified via computer simulation. In the simulation,
the controller of a mobile robot generates no overshoot
and converges better to rotational trajectory that has
many change of the curvature. The proposed trajectory
controller can be applied to every type mobile robot
that can be transformed into chained form. We can see
that this method is more systematic and efficient than
the trajectory controller based on feedback linearization
technique proposed by d'Andrea-Novel [4].
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