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Abstract. This paper deals with space Beltrami system with three characteristic ma-

trices in even dimensions, which can be regarded as a generalization of space Beltrami

system with one and two characteristic matrices. It is transformed into a nonhomoge-

neous p-harmonic equation d∗A(x, dfI) = d∗B(x, Df) by using the technique of outer

differential forms and exterior algebra of matrices. In the process, we only use the uni-

formly elliptic condition with respect to the characteristic matrices. The Lipschitz type

condition, the monotonicity condition and the homogeneous condition of the operator A

and the controlled growth condition of the operator B are derived.

1. Introduction and statement of result

For Ω a bounded domain in Rn(n ≥ 2), we consider a mapping f =
(f1, f2, · · · , fn) ∈ W 1,n

loc (Ω,Rn). The differential Df(x) =
(

∂fi

∂xj

)
1≤i,j≤n

and its

determinant Jf (x) = detDf(x) are, therefore, defined almost everywhere in Ω.
Throughout this paper, we assume that Jf (x) is non-negative, that is, f is sense-
preserving. For a matrix A, we define the operator norm of it by |A| = sup|h|=1 |Ah|.
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Definition. A mapping f = (f1, f2, · · · , fn) ∈ W 1,n
loc (Ω,Rn) is said to be K-

quasiregular, 1 ≤ K <∞, if

(1.1) |Df(x)|n ≤ KJf (x)

for almost every x ∈ Ω. If, in addition, f is homeomorphic, then it is called K-
quasiconformal.

The theory of higher dimensional quasiregular mappings began with Yu. G.
Rešhetnyak’s theorem, stating that they are continuous, discrete and open, if they
are nonconstant, see [9]. Development of the analytic theory of quasiregular map-
pings depends upon advances in PDEs, harmonic analysis and (in dimension 2)
complex function theory. The first equation of particular relevance to the theory of
quasiregular mappings is the n-dimensional Beltrami system

(1.2) Dtf(x)Df(x) = J
2/n
f (x)G(x),

where Dtf(x) is the transpose of Df(x), G(x) ∈ GL(n) is a positively-defined,
symmetric, and determinant 1 matrix, and satisfies the following uniformly elliptic
condition

α|ξ|2 ≤ 〈G(x)ξ, ξ〉 ≤ β|ξ|2, ∀ξ ∈ Rn, 0 < α ≤ β <∞,

Yu.G.Rešhetnyak obtained in [9] the following result: every component function
u = f i, i = 1, 2, · · · , n of equation (1.2) is a weak solution of the following divergence
type elliptic equation (also called A-harmonic equation)

(1.3) divA(x,∇u) = 0,

where A(x, ξ) = 〈G−1(x)ξ, ξ〉n−2
2 G−1(x)ξ. See also [6] and [7]. The weak solution

of (1.3) means that

(1.4)
∫

Ω

〈A(x,∇u),∇ϕ〉dx = 0

for arbitrary ϕ ∈W 1,n
0 (Ω). By this result, we know that there is a close relationship

between space quasiregular mappings and the weak solution of the A-harmonic
equation (1.3).

Consider the following Beltrami system with two characteristic matrices

(1.5) Dtf(x)H(x)Df(x) = J
2/n
f (x)G(x),

where H(x), G(x) ∈ GL(n), and satisfy the following uniformly elliptic condition

(1.6) α1|ξ|2 ≤ 〈G(x)ξ, ξ〉 ≤ β1|ξ|2, ∀ξ ∈ Rn, 0 < α1 ≤ β1 <∞
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(1.7) α2|η|2 ≤ 〈H(x)η, η〉 ≤ β2|η|2, ∀η ∈ Rn, 0 < α2 ≤ β2 <∞.

In [5], the authors have derived the following result: let f ∈ W 1,n
loc (Ω,Rn) is a

generalized solution of (1.5) with the conditions (1.6) and (1.7), then du = df i1 ∧
· · · ∧ df il(1 ≤ i1 < · · · < il ≤ n, 1 ≤ l ≤ n) is a weak solution of the p-harmonic
equation

d∗A(x, du) = d∗B(x,Df),

where

A(x, du) =

(
〈G−1

# (x)du, du〉
HI

#(x)

)n−2l
2l

G−1
# (x)du

=

(
〈G−1

# (x)du, du〉
HI

#(x)

) p−2
2

G−1
# (x)du,

B(x,Df) = Jf (x)D−1
# f(x)[H−1

# (x)−H−1
# (x0)]dxI ,

where HI
#(x) is the element of H−1

# (x) lies in the diagonal with respect to I =
(i1, · · · , il). The weakly monotonicity result of every component function of (1.5)
also been derived. For some related results, see [3], [4] and [12].

Remark 1. Let n = 2. If we let z = x1 + ix2 and w(z) = f1(x1, x2) + if2(x1, x2),
then equations (1.2) and (1.5) are equivalent separately to the Beltrami equation
with characteristic function µ(z)

(1.8) wz = µ1(z)wz, |µ(z)| ≤ k1 < 1

and the Beltrami equation with two characteristic functions µ1(z) and µ2(z)

(1.9) wz = µ1(z)wz + µ2(z)wz, |µ1(z)|+ |µ2(z)| ≤ k2 < 1

L.Bers[1], I.N.Vekua[10] and Wen Guochun [11] have made lots of research on the
complex equations (1.8) and (1.9), and have obtained some celebrated results on
them.

In this paper, we continue to study a more general Beltrami system, i.e., the
following Beltrami system with three characteristic matrices

(1.10) Dtf(x)H(x)Df(x) +K(x)Dtf(x)Df(x) = J
2/n
f (x)G(x),

where H(x) is a diagonal matrix, G(x) and K(x) are positively-defined, symmetric
matrices, and satisfy the following uniformly elliptic conditions

(1.11) α1|ξ|2 ≤ 〈H(x)ξ, ξ〉 ≤ β1|ξ|2, ∀ξ ∈ Rn, 0 < α1 ≤ β1 <∞,

(1.12) α2|η|2 ≤ 〈G(x)η, η〉 ≤ β2|η|2, ∀η ∈ Rn, 0 < α2 ≤ β2 <∞,
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(1.13) α3|ζ|2 ≤ 〈K(x)ζ, ζ〉 ≤ β3|ζ|2, ∀ζ ∈ Rn, 0 ≤ α3 ≤ β3 <∞.

Remark 2. It is easy to see that if f = (f1, f2, · · · , fn) ∈ W 1,n
loc (Ω,Rn) is a

generalized solution of (1.10) , then f is ( β2
α1+α3

)n/2-quasiregular.

In fact, we can obtain by (1.10) that for arbitrary ξ ∈ Rn,

〈Dtf(x)H(x)Df(x)ξ, ξ〉+ 〈K(x)Dtf(x)Df(x)ξ, ξ〉 = J
2/n
f (x)〈G(x)ξ, ξ〉.

By (1.11) ∼ (1.13) we can derive that

(α1 + α3)|Df(x)ξ|2 ≤ 〈H(x)Df(x)ξ,Df(x)ξ〉+ α3〈Df(x)ξ,Df(x)ξ〉
≤ 〈Dtf(x)H(x)Df(x)ξ, ξ〉+ 〈K(x)Dtf(x)Df(x)ξ, ξ〉
= J

2/n
f (x)〈G(x)ξ, ξ〉 ≤ β2J

2/n
f (x)|ξ|2.

Therefore
|Df(x)|2 ≤ β2

α1 + α3
J

2/n
f (x).

Thus the desired result follows.

Remark 3. Combined with the result in Remark 2 and the regularity result for K-
quasiregular mappings in [11], we can obtain the regularity result for the generalized
solution of (1.10): There exists p = p(n,K) > n, such that any generalized solution
of (1.10) is in fact in the space W 1,p

loc (Ω,Rn).

The system (1.10) has a strong background when n = 2 and has been widely
studied. But for the case when n > 2, it is very difficult to study it directly since the
system (1.10) is overdetermined and fully nonlinear. An effective research method
is to transform it to an elliptic equation, and study the elliptic equaiton by using the
method of differential geometry and the analytical method of Sobolev spaces. The
aim of this paper is to transform system (1.10) to a nonhomogeneous p-equation,
and derive the estimates of the operators A and B. This make a bridge between
system (1.10) and nonhomogeneous elliptic equations. We obtain

Theorem. Suppose that the space dimension n is even and f ∈ W 1,n
loc (Ω, Rn)

is a generalized solution of (1.10) ,which satisfy conditions (1.11) ∼ (1.13), then
df I = df i1 ∧ · · · ∧ df il ,1 ≤ i1 < i2 < · · · < il ≤ n, l = n

2 , is a weak solution of the
following p-harmonic equation

(1.14) d∗A(x, df I) = d∗B(x,Df),

where

A(x, df I) = G−1
# (x)df I

B(x,Df) = G−1
# (x)Dt

#f(x)H#(x)(H−1
# (x)

−H−1
# (x0))dxI −G−1

# (x)K#(x)Dt
#f(x)H−1

# (x0)dxI .
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The operator A satisfies the Lipschitz type condition

(1.15) |A(x, h1)−A(x, h2)| ≤ C1|h1 − h2|, C1 =
1
αl

3

the monotonicity condition

(1.16) 〈A(x, h1)−A(x, h2), h1 − h2〉 ≥ C2|h1 − h2|2, C2 =
1
βl

3

,

and the homogeneous condition

(1.17) A(x, λh) = λA(x, h), ∀λ ∈ R,

and the operator B satisfies the controlled growth condition

(1.18) |B(x, h)| ≤ C3|h|, C3 =
(

2(βl
1 + βl

3)
αl

2

) 1
2

· 1
αl

1

+
1
αl

3

.

Remark 4. We can derive some useful properties of the generalized solutions of
(1.10) by using the p-harmonic equation (1.14). These results will be published in
other papers.

2. Preliminaries

Let e1, e2, · · · , en denote the standard unit basis of Rn. For l = 0, 1, · · · , n,
the linear space of l differential forms, spanned by the exterior products eI =
ei1 ∧ ei2 ∧ · · · ∧ eil corresponding to all ordered l-tuples I = (i1, i2, · · · , il), 1 ≤ i1 <
i2 · · · < il ≤ n, is denoted by ∧l = ∧l(Rn). Thus, ∧0(Rn) = R and ∧1 = Rn. We
define the Hodge star operator

∗ : ∧l(Rn) → ∧n−l(Rn)

by the rule
∗1 = e1 ∧ e2 ∧ · · · ∧ en,

and
α ∧ ∗β = β ∧ ∗α = 〈α, β〉(∗1)

for all α, β ∈ ∧l, l = 1, 2, · · ·n. The norm of α ∈ ∧l is then

|α|2 = 〈α, α〉 = ∗(α ∧ ∗α) ∈ ∧0 = R.

The Hodge star is an isometric isomorphism on ∧l with

∗ : ∧l → ∧n−l,
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and
∗∗ = (−1)l(n−l) : ∧l → ∧l.

A differential l-form ω on Ω is simply a Schwarz distribution on Ω with values
in ∧l = ∧l(Rn). We write ω ∈ D′(Ω,∧l). Therefore every l-from ω may be written
uniquely as

α(x) =
∑

1≤i1<···<il≤n

αi1,··· ,il
(x)dxi1 ∧ · · · ∧ dxil

,

where the coefficients αi1,··· ,il
(x) are functions or distributions.

Of fundamental concern to us will be the exterior derivative

d : D′(Ω,∧l) → D′(Ω,∧l+1)

it is uniquely determined by the following three conditions:

(i) if l = 0, then df is the differential of f ;

(ii) for α ∈ D′(Ω,∧l), β ∈ D′(Ω,∧k), we have

d(α ∧ β) = dα ∧ β + (−1)lα ∧ dβ

(iii) d(dα) = 0.

The formal adjoint ( also called the Hodge codifferential ) of d is the operator

d∗ = (−1)nl+1 ∗ d∗ : D′(Ω,∧l+1) → D′(Ω,∧l).

For any forms α ∈ Lp(Ω,∧l), β ∈ Lq(Ω,∧l), 1 ≤ p, q ≤ ∞, 1
p + 1

q = 1, define

(α, β) =
∫

Ω

〈α(x), β(x)〉dx.

Definition. Let β ∈ Lq(Ω,∧l). We call the codifferential of β is zero in the weak
sense, if for any α ∈ Lp

1(Ω,∧l−1), 1 ≤ p, q <∞, 1
p + 1

q = 1 with compact support in
Ω, we have

(dα, β) = 0

We can also define the differential of α is zero in the weak sense in the same
manner.

Let G be an n× n matrix. The lth exterior power of G is the linear operator

G# : ∧l → ∧l

defined by
G#(α1 ∧ α2 ∧ · · · ∧ αl) = Gα1 ∧Gα1 ∧ · · · ∧Gαl

for α1, α2, · · · , αl ∈ ∧1(Rn) and then extend linearly to all of ∧l. Thus G# is a
Cl

n × Cl
n matrix.
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For the properties of G# see [7] and [8].

Let f : Ω → Rn, f = (f1, f2, · · · , fn) ∈ W 1,p
loc (Ω,Rn), p ≥ 1. Then f induces a

homomorphism
f∗ : C∞(Rn,∧l−1) → L1,p

loc(Ω,∧
l−1)

called the pull back. More precisely, let α ∈ C∞(Rn,∧l−1), α =
∑

I α
IdxI . Then

(f∗α)(x) =
∑

I

αI(f(x))df i1 ∧ df i2 ∧ · · · ∧ df il .

For the properties of the pull back operator see [6]∼[8].
Other unstated symbol in this paper can be found in [6]∼[8].

3. p-harmonic equation for the Beltrami system (1.10)

From the system (1.10) we can obtain

D−1f(x) = J
−2/n
f (x)G−1(x)Dtf(x)H(x) + J

−2/n
f (x)G−1(x)K(x)Dtf(x)

take the lth exterior power in the above equality, we derive that

D−1
# f(x) = J

−2l/n
f (x)G−1

# (x)Dt
#f(x)H#(x)+J−2l/n

f (x)G−1
# (x)K#(x)Dt

#f(x) : ∧l → ∧l.

Hence

Jf (x)D−1
# f(x) = J

(n−2l)/n
f (x)G−1

# (x)Dt
#f(x)H#(x)(3.1)

+ J
(n−2l)/n
f (x)G−1

# (x)K#(x)Dt
#f(x) : ∧l → ∧l.

Since f(x) is differentiable almost everywhere, it is no loss of generality to assume
Jf (x) 6= 0, x is a differentiable point of f(x), and a Lebesgue point of Jf (x). Then
by [2] we know that there exists a neighborhood U of x, such that f is homeomorphic
on U . Let V = f(U) and dxI = dxi1 ∧ · · · ∧ dxil . Fix x0 ∈ Ω. By (3.1), we have

d∗[Jf (x)D−1
# f(x)H−1

# (x0)dxI ](3.2)

= d∗[J (n−2l)/n
f (x)G−1

# (x)Dt
#f(x)H#(x)H−1

# (x0)dxI ]

+ d∗[J (n−2l)/n
f (x)G−1

# (x)K#(x)Dt
#f(x)H−1

# (x0)dxI ].

Our nearest goal is to prove that the left hand side in the above equality is zero in
the weak sense. To this end, take an arbitrary

ψ(ζ) =
∑

J

ψJ(ζ)dζJ =
∑

J

ψJ(ζ)dζj1 ∧ · · · ∧ dζjl−1 ∈ C∞
0 (V,∧l−1).

Let
ϕ(x) = (f∗ψ)(x) =

∑
j

ψJ(f(x))df j1 ∧ · · · ∧ df jl−1 .
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Then by

df j ∧ df j1 ∧ · · · ∧ df jl−1 = Dt
#f(x)dxj ∧ dxj1 ∧ · · · ∧ dxjl−1 .

(For this formula see [7] or [8]) we have

dϕ(x) =
∑

J

dψJ(f(x)) ∧ df j1 ∧ · · · ∧ df jl−1

=
∑

J

n∑
j=1

∂ψJ(ζ)
∂ζj

|ζ=f(x)df
j ∧ df j1 ∧ df jl−1

= Dt
#f(x)

∑
J

n∑
j=1

∂ψJ(ζ)
∂ζj

|ζ=f(x)dxj

 ∧ dxj1 ∧ · · · ∧ dxjl−1 .

Therefore∫
U

〈Jf (x)D−1
# f(x)H−1

# (x0)dxI , dϕ(x)〉dx

=
∫

U

〈H−1
# (x0)dxI , (Dt

#f(x))−1dϕ(x)〉Jf (x)dx

=
∫

U

〈H−1
# (x0)dxI ,

∑
J

n∑
j=1

∂ψJ(ζ)
∂ζj

|ζ=f(x)dx
j ∧ dxj1 ∧ · · · ∧ dxjl−1〉Jf (x)dx

=
∫

V

〈H−1
# (x0)dζI ,

∑
J

n∑
j=1

∂ψJ(ζ)
∂ζj

dζj ∧ dζj1 ∧ · · · ∧ dζjl−1〉dζ

=
∫

V

〈H−1
# (x0)dζJ , dψ(ζ)〉dζ =

∫
V

〈d∗[H−1
# (x0)dζJ ], ψ(ζ)〉dζ = 0.

The last equality holds since the differential form H−1
# (x0)dζJ has constant coeffi-

cients. Thus we obtain from (3.2) that

d∗[J (n−2l)/n
f (x)G−1

# (x)Dt
#f(x)H#(x)H−1

# (x0)dxI ]

= −d∗[J (n−2l)/n
f (x)G−1

# (x)K#(x)Dt
#f(x)H−1

# (x0)dxI ]

in the weak sense.
Let df I = df i1 ∧ · · · ∧ df il . By df I = Dt

#f(x)dxI , we have

d∗{J (n−2l)/n
f (x)G−1

# (x)[df I +Dt
#f(x)(H#(x)H−1

# (x0)− Id#)dxI ]}

= −d∗[J (n−2l)/n
f (x)G−1

# (x)K#(x)Dt
#f(x)H−1

# (x0)dxI ].

That is

d∗{J (n−2l)/n
f (x)G−1

# (x)df I}(3.3)

= d∗{J (n−2l)/n
f (x)G−1

# (x)Dt
#f(x)H#(x)(H−1

# (x)−H−1
# (x0))dxI}

− d∗[J (n−2l)/n
f (x)G−1

# (x)K#(x)Dt
#f(x)H−1

# (x0)dxI ].
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If the dimension n is even, then take l = n
2 , (3.3) becomes

d∗{G−1
# (x)df I} = d∗{G−1

# (x)Dt
#f(x)H#(x)(H−1

# (x)−H−1
# (x0))dxI}

− d∗[G−1
# (x)K#(x)Dt

#f(x)H−1
# (x0)dxI ].

This is nothing but (1.14).

4. The estimates for the operators A and B

In this section, we derive the estimates (1.15) (1.18) for the operators A and B.
We first derive the estimates for the operator

A(x, h) = G−1
# (x)h.

(i) the Lipschitz type condition

|A(x, h1)−A(x, h2)| ≤ C1|h1 − h2|, C1 =
1
αl

3

.

By (1.13), we know that

(4.1)
1
βl

3

|ζ|2 ≤ 〈G−1
# (x)ζ, ζ〉 ≤ 1

αl
3

|ζ|2.

Therefore
|G−1

# (x)| ≤ 1
αl

3

.

Hence
|A(x, h1)−A(x, h2)| ≤ |G−1

# (x)||h1 − h2| ≤
1
αl

3

|h1 − h2|.

(ii) the monotonicity inequality

〈A(x, h1)−A(x, h2), h1 − h2〉 ≥ C2|h1 − h2|2, C2 =
1
βl

3

.

By (4.1) we can derive that

〈G−1
# (x)h1 −G−1

# (x)h2, h1 − h2〉

= 〈G−1
# (x)(h1 − h2), h1 − h2〉 ≥

1
βl

3

|h1 − h2|2

(iii) the homogeneous condition

A(x, λh) = λA(x, h), ∀λ ∈ R.

This can be easily derived by the definition of A(x, h).
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We next derive the controlled growth condition (1.18) of the operator B. By
(3.2), we know that

B(x,Df) = A(x, df I) + Jf (x)D−1
# f(x)H−1

# (x0)dxI ,

and from the Lipschitz type condition (1.15), we know that

(4.2) |A(x, df I)| ≤ C1|df I |, C1 =
1
αl

3

.

Hence we need only to estimate |Jf (x)D−1
# f(x)H−1

# (x0)dxI |.
By (1.10) we have

H(x) + (Dtf(x))−1K(x)Dtf(x) = J
2/n
f (x)(Dtf(x))−1G(x)(Df(x))−1.

Take the lth(l = n
2 ) exterior power, we have

H#(x) + (Dt
#f(x))−1K#(x)Dt

#f(x) = Jf (x)(Dt
#f(x))−1G#(x)(D#f(x))−1.

Thus for any η ∈ RCl
2l , η 6= 0, we have

〈H#(x)η, η〉+ 〈K#(x)Dt
#f(x)η, (D#f(x))−1η〉(4.3)

= Jf (x)〈G#(x)D−1
# f(x)η,D−1

# f(x)η〉.

By the uniformly elliptic conditions (1.11) (1.13), we know that

(4.4) αl
1|τ |2 ≤ 〈H#(x)τ, τ〉 ≤ βl

1|τ |2,

(4.5) αl
2|τ |2 ≤ 〈G#(x)τ, τ〉 ≤ βl

2|τ |2,

(4.6) αl
3|τ |2 ≤ 〈K#(x)τ, τ〉 ≤ βl

3|τ |2.

Therefore

(4.7) 〈K#(x)Dt
#f(x)η, (D#f(x))−1η〉 ≤ βl

3〈Dt
#f(x)η, (D#f(x))−1η〉 = βl

3|η|2,

and

(4.8) αl
2|D−1

# f(x)η|2 ≤ 〈G#(x)D−1
# f(x)η,D−1

# f(x)η〉 ≤ βl
2|D−1

# f(x)η|2.

Thus, by (4.3) (4.8) we can derive that

αl
2Jf (x)|D−1

# f(x)η|2 ≤ (βl
1 + βl

3)|η|2.

That is

(4.9) Jf (x)|D−1
# f(x)|2 ≤ βl

1 + βl
3

αl
2

.
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By using the system (1.10) again, we have

Jf (x)H−1
# (x) = D#f(x)G−1

# (x)Dt
#f(x) +D#f(x)G−1

# (x)K#(x)Dt
#f(x)H−1

# (x).

Thus

Jf (x)〈H−1
# (x)dxI , dxI〉

= 〈D#f(x)G−1
# (x)Dt

#f(x)dxI , dxI〉+ 〈D#f(x)G−1
# (x)K#(x)Dt

#f(x)H−1
# (x)dxI , dxI〉.

Since the matrix H(x) is diagonal, so is H−1(x) and H−1
# (x). Therefore

Jf (x)(H−1
# (x))I(4.10)

= 〈G−1
# (x)Dt

#f(x)dxI , Dt
#f(x)dxI〉

+ (H−1
# (x))I〈G−1

# (x)K#(x)Dt
#f(x)dxI , Dt

#f(x)dxI〉

= 〈G−1
# (x)df I , df I〉+ (H−1

# (x))I〈G−1
# (x)K#(x)df I , df I〉,

where (H−1
# (x))I is the element lies in the diagonal of H−1

# (x) with respect to
I = (i1, · · · , il). By the condition (1.11) we know that

0 <
1
βl

1

≤ |(H−1
# (x))I | ≤ 1

αl
1

.

Hence from (4.10) we have

(4.11) Jf (x) =
〈G−1

# (x)df I , df I〉
(H−1

# (x))I
+ 〈G−1

# (x)K#(x)df I , df I〉.

By (4.11) and (4.4) (4.6), we can easily derive that

(4.12) Jf (x) ≤ βl
1 + βl

3

αl
2

|df I |2.

Combining (4.9) with (4.12), we have

J2
f (x)|D−1

# f(x)|2 ≤ 2(βl
1 + βl

3)
αl

2

|df I |2.

It follows that

Jf (x)|D−1
# f(x)| ≤

(
2(βl

1 + βl
3)

αl
2

) 1
2

|df I |.

Hence

(4.13) |Jf (x)D−1
# f(x)H−1

# (x0)dxI | ≤
(

2(βl
1 + βl

3)
αl

2

) 1
2

· 1
αl

1

|df I |.

The desired controlled growth condition of B is obtained by combining (4.2) with
(4.13).
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