• 제목/요약/키워드: difference-differential polynomials

검색결과 17건 처리시간 0.024초

SOME RESULTS ON UNIQUENESS OF CERTAIN TYPE OF SHIFT POLYNOMIALS SHARING A SMALL FUNCTION

  • Saha, Biswajit;Pal, Subrata;Biswas, Tanmay
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제29권1호
    • /
    • pp.37-50
    • /
    • 2022
  • The purpose of the paper is to study the uniqueness problems of certain type of difference polynomials sharing a small function. With the concept of weakly weighted sharing and relaxed weighted sharing we obtain some results which extend and generalize some results due to P. Sahoo and G. Biswas [Tamkang Journal of Mathematics, 49(2)(2018), 85-97].

ON THE EXISTENCE OF SOLUTIONS OF FERMAT-TYPE DIFFERENTIAL-DIFFERENCE EQUATIONS

  • Chen, Jun-Fan;Lin, Shu-Qing
    • 대한수학회보
    • /
    • 제58권4호
    • /
    • pp.983-1002
    • /
    • 2021
  • We investigate the non-existence of finite order transcendental entire solutions of Fermat-type differential-difference equations [f(z)f'(z)]n + P2(z)fm(z + 𝜂) = Q(z) and [f(z)f'(z)]n + P(z)[∆𝜂f(z)]m = Q(z), where P(z) and Q(z) are non-zero polynomials, m and n are positive integers, and 𝜂 ∈ ℂ \ {0}. In addition, we discuss transcendental entire solutions of finite order of the following Fermat-type differential-difference equation P2(z) [f(k)(z)]2 + [αf(z + 𝜂) - 𝛽f(z)]2 = er(z), where $P(z){\not\equiv}0$ is a polynomial, r(z) is a non-constant polynomial, α ≠ 0 and 𝛽 are constants, k is a positive integer, and 𝜂 ∈ ℂ \ {0}. Our results generalize some previous results.

ORTHOGONAL POLYNOMIALS RELATIVE TO LINEAR PERTURBATIONS OF QUASI-DEFINITE MOMENT FUNCTIONALS

  • Kwon, K.H.;Lee, D.W.;Lee, J.H.
    • 대한수학회보
    • /
    • 제36권3호
    • /
    • pp.543-564
    • /
    • 1999
  • Consider a symmetric bilinear form defined on $\prod\times\prod$ by $_{\lambda\mu}$ = $<\sigma,fg>\;+\;\lambdaL[f](a)L[g](a)\;+\;\muM[f](b)m[g](b)$ ,where $\sigma$ is a quasi-definite moment functional, L and M are linear operators on $\prod$, the space of all real polynomials and a,b,$\lambda$ , and $\mu$ are real constants. We find a necessary and sufficient condition for the above bilinear form to be quasi-definite and study various properties of corresponding orthogonal polynomials. This unifies many previous works which treated cases when both L and M are differential or difference operators. finally, infinite order operator equations having such orthogonal polynomials as eigenfunctions are given when $\mu$=0.

  • PDF

DIVIDED DIFFERENCES AND POLYNOMIAL CONVERGENCES

  • PARK, SUK BONG;YOON, GANG JOON;LEE, SEOK-MIN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제20권1호
    • /
    • pp.1-15
    • /
    • 2016
  • The continuous analysis, such as smoothness and uniform convergence, for polynomials and polynomial-like functions using differential operators have been studied considerably, parallel to the study of discrete analysis for these functions, using difference operators. In this work, for the difference operator ${\nabla}_h$ with size h > 0, we verify that for an integer $m{\geq}0$ and a strictly decreasing sequence $h_n$ converging to zero, a continuous function f(x) satisfying $${\nabla}_{h_n}^{m+1}f(kh_n)=0,\text{ for every }n{\geq}1\text{ and }k{\in}{\mathbb{Z}}$$, turns to be a polynomial of degree ${\leq}m$. The proof used the polynomial convergence, and additionally, we investigated several conditions on convergence to polynomials.

EXISTENCE OF POLYNOMIAL INTEGRATING FACTORS

  • Stallworth, Daniel T.;Roush, Fred W.
    • Kyungpook Mathematical Journal
    • /
    • 제28권2호
    • /
    • pp.185-196
    • /
    • 1988
  • We study existence of polynomial integrating factors and solutions F(x, y)=c of first order nonlinear differential equations. We characterize the homogeneous case, and give algorithms for finding existence of and a basis for polynomial solutions of linear difference and differential equations and rational solutions or linear differential equations with polynomial coefficients. We relate singularities to nature of the solution. Solution of differential equations in closed form to some degree might be called more an art than a science: The investigator can try a number of methods and for a number of classes of equations these methods always work. In particular integrating factors are tricky to find. An analogous but simpler situation exists for integrating inclosed form, where for instance there exists a criterion for when an exponential integral can be found in closed form. In this paper we make a beginning in several directions on these problems, for 2 variable ordinary differential equations. The case of exact differentials reduces immediately to quadrature. The next step is perhaps that of a polynomial integrating factor, our main study. Here we are able to provide necessary conditions based on related homogeneous equations which probably suffice to decide existence in most cases. As part of our investigations we provide complete algorithms for existence of and finding a basis for polynomial solutions of linear differential and difference equations with polynomial coefficients, also rational solutions for such differential equations. Our goal would be a method for decidability of whether any differential equation Mdx+Mdy=0 with polynomial M, N has algebraic solutions(or an undecidability proof). We reduce the question of all solutions algebraic to singularities but have not yet found a definite procedure to find their type. We begin with general results on the set of all polynomial solutions and integrating factors. Consider a differential equation Mdx+Ndy where M, N are nonreal polynomials in x, y with no common factor. When does there exist an integrating factor u which is (i) polynomial (ii) rational? In case (i) the solution F(x, y)=c will be a polynomial. We assume all functions here are complex analytic polynomial in some open set.

  • PDF

FRACTIONAL CHEBYSHEV FINITE DIFFERENCE METHOD FOR SOLVING THE FRACTIONAL BVPS

  • Khader, M.M.;Hendy, A.S.
    • Journal of applied mathematics & informatics
    • /
    • 제31권1_2호
    • /
    • pp.299-309
    • /
    • 2013
  • In this paper, we introduce a new numerical technique which we call fractional Chebyshev finite difference method (FChFD). The algorithm is based on a combination of the useful properties of Chebyshev polynomials approximation and finite difference method. We tested this technique to solve numerically fractional BVPs. The proposed technique is based on using matrix operator expressions which applies to the differential terms. The operational matrix method is derived in our approach in order to approximate the fractional derivatives. This operational matrix method can be regarded as a non-uniform finite difference scheme. The error bound for the fractional derivatives is introduced. The fractional derivatives are presented in terms of Caputo sense. The application of the method to fractional BVPs leads to algebraic systems which can be solved by an appropriate method. Several numerical examples are provided to confirm the accuracy and the effectiveness of the proposed method.

MLS 차분법의 결정 변수에 따른 정확도 분석 및 혼합변분이론을 통한 미분근사 성능향상 (On the Improvement of the Accuracy of Higher Order Derivatives in the MLS(Moving Least Square) Difference Method via Mixed Formulation)

  • 김현영;김준식
    • 한국전산구조공학회논문집
    • /
    • 제33권5호
    • /
    • pp.279-286
    • /
    • 2020
  • 본 연구에서는 점근해석 및 논로컬 이론에서 요구하는 4차 이상의 고차 미분근사를 수행하기 위하여 계방정식에 혼합변분이론을 적용하여 MLS 차분법으로부터 구해지는 고차 미분근사의 정확도를 큰 폭으로 향상시킨다. 또한, MLS 차분법에 존재하는 세 가지 조건변수에 따른 고차미분근사의 정확도를 비교·분석한다. 혼합변분이론의 합응력을 후처리하여 변위의 미분을 근사할 경우 기존의 변위장 기반 계방정식의 차분 결과에 비해 미분 차수가 2차 낮아진다. 해석 범위내 절점 수가 과도하게 많거나 기저 차수가 클 경우 MLS 차분법의 영향영역 내에서 과적합(overfitting)이 발생한다. 또한 영향영역이 최적 범위 이상으로 넓어질 경우 근사의 정확도가 떨어진다. 위 내용을 사인 하중을 받는 단순지지보 수치예제로부터 확인하였다.