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ABSTRACT. The continuous analysis, such as smoothness and uniform convergence, for poly-
nomials and polynomial-like functions using differential operators have been studied consider-
ably, parallel to the study of discrete analysis for these functions, using difference operators.

In this work, for the difference operator ∇h with size h > 0, we verify that for an integer
m ≥ 0 and a strictly decreasing sequence hn converging to zero, a continuous function f(x)
satisfying

∇m+1
hn

f(khn) = 0, for every n ≥ 1 and k ∈ Z,
turns to be a polynomial of degree ≤ m. The proof used the polynomial convergence, and
additionally, we investigated several conditions on convergence to polynomials.

1. INTRODUCTION

In recent decades, the problem of approximation by a linear combination of integer translates
of one or more basis functions has arisen, especially in the study of Wavelet and Computer
Aided Geometric Design (CAGD). In CAGD, polynomials and polynomial-like functions are
used as basis functions, for example, Bernstein polynomials, B-spline polynomials, Box splines
and so on. In drawing curves and surfaces using computers, polynomials and polynomial-
like functions are playing much important roles. In turn, the continuous analysis, such as
smoothness and uniform convergence, for these functions have been studied considerably, in
harmony with the study of discrete analogue for these functions. For more details, we refer to
[1] and [2].

In polynomial applications, we come across the difference operators and the polynomial
(point-wise) convergence in analyzing the smoothness of the curves or surfaces. The differ-
ence operators and the convergence of polynomial sequences provide efficient implements in
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estimating whether a subdivision scheme generates polynomials. Just as the differential opera-
tor is to the continuous analysis, so is the difference operator to the discrete analysis.

In this work, we consider the divided difference equations and several conditions on the
convergence to polynomial. The backward and forward (divided) difference operators with
size h > 0 are defined as

∇hf(x) := f(x)− f(x− h) and ∆hf(x) := f(x+ h)− f(x)

for a function f(x). The iterated operators are written as

∇m
h f(x) := ∇h

(
∇m−1

h f(x)
)

and ∆m
h f(x) := ∆h

(
∆m−1

h f(x)
)
.

Note that we have

∇m
h f(x) =

m∑
k=0

(−1)k
(
m

k

)
f(x− kh) and ∆m

h f(x) =

m∑
k=0

(−1)m−k

(
m

k

)
f(x+ kh).

Then for a polynomial p(x) of degree ≤ m, we easily see, like differential equations, that
∇m+1

h p ≡ 0 and ∆m+1
h p ≡ 0 for any h.

Conversely, we verify that for a strictly decreasing sequence {hn}∞n=1 convergent to zero, a
continuous function f satisfying the divided difference equations of order m+ 1

∇m+1
hn

f(khn) = 0, for every n ≥ 1 and k ∈ Z,

is also a polynomial of degree ≤ m. However, the continuity condition on solutions of the
divided difference equations is necessary. For example, a real valued function f defined on the
whole real line R satisfying the linearity :

f(x+ y) = f(x) + f(y), for all x, y ∈ R,

which yields f to satisfy the differences

∇2
hf ≡ 0 and ∆2

hf ≡ 0 for every h > 0.

Such a function f seems to be a line. Surprisingly, there are functions which satisfy the linearity
but are not continuous at any point. We construct a function satisfying the linearity but are not
continuous at any point (see Theorem 2.1). And we study several conditions on the convergence
to polynomial; we investigate the convergence in the dyadic set (Theorem 3.1 and Corollary
3.2), and we consider general cases (Theorem 3.3 and Remark 3.4). In Section 4, we generalize
Theorem 2.1 to Theorem 4.2 and Corollary 4.3 using the polynomial convergence based on the
results in Section 3, and give some analogy of a differential equation with respect to a linear
combination of discrete difference operators. Even though the results have been widely used in
Approximation theory and Functional Analysis, their rigorous proofs have not been given yet
as far as we know.
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2. CHARACTERIZATION OF SOLUTIONS TO DIFFERENCE EQUATIONS

In the section, we investigate the solution to the backward difference equations

∇m+1
h f ≡ 0, for every h = 1/2ℓ, ℓ = 0, 1, 2, · · · . (2.1)

To this end, we introduce some notations and terminologies. By N0 we denote the set of all
non-negative integers and by K the dyadic set defined as

K = {i/2j : i ∈ Z, j ∈ N0},

where Z stands for the set of all integers. For given m + 1 distinct (real or complex) numbers
{xk}m+1

k=1 , we introduce the Lagrange polynomials {ℓk(x)}k=1 defined by

ℓk(x) =
w(x)

w′(xk)(x− xk)
, k = 1, 2, · · · ,m+ 1,

where w(x) = (x− x1)(x− x2) · · · (x− xm+1). Then it is well-known that ℓk(x) is a unique
polynomial of degree ≤ m having the properties :

ℓk(xj) = δkj =

{
0, if k ̸= j,
1, if k = j.

For a given function f , the interpolation polynomial pm(f ;x) of degree ≤ m satisfying the
conditions:

pm(f ;xk) = f(xk), k = 1, 2, · · · ,m+ 1

is written as

pm(f ;x) =

m+1∑
k=1

f(xk)ℓk(x). (2.2)

In particular, if f is a polynomial of degree ≤ m, then Equation (2.2) implies that f(x) is
identically equal to pm(f ;x).

Theorem 2.1. Let f be a function defined on the whole real line R. Assume that there is an
integer m ≥ 0 such that

∇m+1
h f(jh) = 0, for every h = 1/2ℓ, ℓ ∈ N0, and j ∈ Z. (2.3)

If f is continuous, then f is a polynomial of degree ≤ m. Moreover, there is a discontinuous
function that satisfies

∇m+1
h f ≡ 0

for any size h > 0.

Proof. Assume that f is continuous on R. Fix ℓ to be a non-negative integer. Then Equation
(2.3) implies that for every j ∈ Z, we have

∇m+1
h f(j/2ℓ) =

m+1∑
k=0

(−1)k
(
m+ 1

k

)
f

(
j − k

2ℓ

)
= 0, (2.4)



4 S.B. PARK, G.J. YOON, AND S.M. LEE

where h = 1/2ℓ. Let pℓ(x) be the polynomial of degree ≤ m interpolating to f(x) at
x = j/2ℓ, j = 0, 1, 2, · · · ,m. Then pℓ(x) satisfies the difference equation (2.3). Since
the equation

m+1∑
k=0

(−1)k
(
m+ 1

k

)
yi−k = 0, i ∈ Z

has a unique solution {yi}i∈Z with initial values y0, y1, · · · , ym, we induce that

f

(
i

2ℓ

)
= pℓ

(
i

2ℓ

)
, for every i ∈ Z. (2.5)

By the same argument with h = 1/2ℓ+1, we can see that there is a polynomial pℓ+1(x) of
degree ≤ m such that

f

(
i

2ℓ+1

)
= pℓ+1

(
i

2ℓ+1

)
, for every i ∈ Z. (2.6)

Equations (2.5) and (2.6) show that the polynomials pℓ(x) and pℓ+1(x) have the same values
at all the points x = i/2ℓ, i ∈ Z. Thus pℓ and pℓ+1 are the same. Continuing this process, we
have that there is a polynomial p(x) of degree ≤ m such that

f(x) = p(x), for every x ∈ K.

Since the set K is dense in R, for every x ∈ R, there is a sequence {yk}∞k=0 in K converging
to x. The continuity of f at x implies that

f(x) = lim
k→∞

f(yk) = lim
k→∞

p(yk) = p(x).

Thus we have that f ≡ p, which proves the first claim.
Now, we shall construct a discontinuous function satisfying (2.3), which is somewhat in the
abstract.
We regard the space of real numbers R as an infinite dimensional vector space over the rational
field Q, the set of all rational numbers. Using Zorn’s lemma ([3, Chapter 4]), we deduce that
R has a (Hamel) basis = {eα}α∈I including 1,

√
2. Let B denote the basis. Then every real

number x has a unique representation as a linear combination of finitely many elements of B,

x = c1 + c2
√
2 +

n∑
k=1

ckeαk
, (2.7)

where c1, c2, and ck are nonzero rational numbers depending on x. Now, define a function f
on R as follows. First, define the value of f on B as

f(1) = 0, f(
√
2) = 1, and f(eα) = 0, ∀α ∈ I,

and then for every x ∈ R in the form (2.7), f(x) is defined as

f(x) = f

(
c1 + c2

√
2 +

n∑
k=1

ckeαk

)
:= c1f(1) + c2f(

√
2) +

n∑
k=1

ckf(eαk
).
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By the definition of f , we find that f satisfies the linearity:
(i) f(rx) := rf(x) for every r ∈ Q and x ∈ R;

(ii) f(x+ y) := f(x) + f(y) for every x, y ∈ R.
In other words, f(x) is the Q–linear function from R to Q sending a real number to its

√
2-

coordinate with respect to the basis. Let y be a fixed real number. We can also find sequences
{xn}∞n=1 and {yn}∞n=1 of rational numbers converging to

√
2 and y, respectively. We have

from the definition of f that
f(yn) = 0, for all n ≥ 1.

On the other hand, the sequence {x−1
n yn

√
2}∞n=1 converges to y and

lim
n→∞

f

(
yn
xn

√
2

)
= lim

n→∞

yn
xn

=
y√
2
,

which shows the discontinuity of f at y ̸= 0. Also, we see that sequence {
√
2

xn
− 1} converges

to zero as n tends to ∞, but

lim
n→∞

f

(√
2

xn
− 1

)
= lim

n→∞

1

xn
=

1√
2
̸= f(0).

Hence, we have shown that f is discontinuous at every point in R.
Note that the function f satisfies

∇2
hf ≡ 0, ∀h > 0 and ∇hf ≡ 0, ∀h = 1

2ℓ
, ℓ ∈ N0.

We define fm by fm(x) := (f(x))m. Using the identities
m+1∑
k=0

(−1)k
(
m+ 1

k

)
kj =

{
0 if 0 ≤ j < m+ 1,
(−1)m+1(m+ 1)! if j = m+ 1,

we can see that
∇m+1

h fm ≡ 0 ∀h > 0

but for any real number x, there exists at least one (and therefore infinitely many) h > 0 such
that

∇m
h fm(x) ̸= 0.

2

Definition 2.2. We call the function f in the proof of the second argument of Theorem 2.1 as
the

√
2-coordinate function, and fm as the mth-power

√
2-coordinate function.

A subtle change of expression of Theorem 2.1 makes the following corollary.

Corollary 2.3. Let f be a continuous function on the set of real numbers. Then there is an
integer m ≥ 0 such that

∇m+1
h f ≡ 0, for every h = 1/2ℓ, ℓ ∈ N0

if and only if f is a polynomial of degree ≤ m.
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The property for the forward difference follows from the same argument of proof of Theorem
2.1:

Corollary 2.4. Let f be a function defined on the whole real line. Assume that there is an
integer m ≥ 0 such that

∆m+1
h f(jh) = 0, for every h = 1/2ℓ, ℓ ∈ N0, and j ∈ Z.

If f is continuous, then f is a polynomial of degree ≤ m.

Now we give some generalization for Theorem 2.1. We write the condition (2.3) for Theo-
rem 2.1 as follows:

∇m+1
h f = 0 in K where h = 1/2ℓ for infinitely many ℓ ∈ N0. (2.8)

By changing K into some dense subgroup D of R, we have the following.

Theorem 2.5. Let D be a subgroup of the additive group R which is dense in R. Suppose D
has a set of generators B = {h1, h2, h3, . . . } such that for all i ∈ N, hi−1 = nihi for some
integer ni. Assume that for a real valued function f defined on R, there is an integer m ≥ 0
such that

∇m+1
hn

f = 0 in D, for all n ∈ N. (2.9)
Then f is a polynomial of degree ≤ m if and only if f is continuous.

Proof. The proof is the same as that of the first part of Theorem 2.1 by replacing 1/2ℓ into
hn with n = ℓ+ 1. 2

Remark 2.6. Let D be a dense subgroup of R. The followings are equivalent:
(1) D has a set of generators B = {b1, b2, b3, . . . } such that any two elements bi, bj in B

has a rational ratio, that is, bi = ri,jbj for some rational number ri,j .
(2) D has a set of generators C = {h1, h2, h3, . . . } with the property hi−1 = nihi for

some integer ni.

Proof. (2) trivially implies (1). Suppose that (1) holds. First we notice that there is a real
number α such that any element of D can be written as qα for some rational number q. Take
h1 = b1. Inductively, suppose we have elements h1, h2, . . . , hi of D such that hj−1 = njhj
for j = 2, 3, . . . , i, and the subgroup ⟨h1, h2, . . . , hi⟩ = ⟨hi⟩ = {khi : k ∈ Z} generated
by those elements is equal to the subgroup ⟨b1, b2, . . . , bi⟩. The subgroup generated by hi and
bi+1 has one generator. Indeed, if we denote hi = (k1/k2)α and bi+1 = (k3/k4)α for integers
k1, k2, k3, and k4, then

⟨hi, bi+1⟩ =
⟨
gcd(k1k4, k3k2)

k2k4
α

⟩
.

Take hi+1 ∈ D the generator. Then ⟨hi+1⟩ = ⟨h1, h2, . . . , hi+1⟩ = ⟨b1, b2, . . . , bi+1⟩ and there
is an integer ni+1 such that hi = ni+1hi+1. 2

If a dense subgroup is not of type in Remark 2.6, then there exist at least two elements with
irrational ratio. But a subgroup containing two elements with irrational ratio is dense in R, e.g.
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{a + b
√
2 : a, b ∈ Z} = ⟨1,

√
2⟩ = Z[

√
2] is dense. Indeed, let α and β be two nonzero

(we may assume positive) real numbers such that α/β is not a rational number. To show that
the group ⟨α, β⟩ is dense, it is enough to verify that for any positive γ ∈ ⟨α, β⟩, there exists a
positive element in ⟨α, β⟩ less than γ/2. Let γ = aα + bβ ∈ ⟨α, β⟩ be positive and suppose
b ̸= 0 where a, b are integers. We may assume 0 < γ < α by subtracting kα for a suitable
integer k. Take a positive integer m such that mγ < α < (m + 1)γ, that is, m = ⌊αγ ⌋. Then
one of the positive differences (m+1)γ−α or α−mγ should be less than γ/2, and it is in the
subgroup ⟨α, β⟩, with coefficient of β equal to (m+1)b or −mb, any of which is not zero. For
the case γ = aα, change the roles of α and β. Hence the subgroup ⟨α, β⟩ is dense subgroup of
R.

Now, set h1 = β − kα where the integer k satisfying 0 < h1 < α and make the sequence
{hn}n∈N by the above process: for example, we get a decreasing sequence

{
√
2− 1 ≈ 0.414, 3− 2

√
2 ≈ 0.172, 17− 12

√
2 ≈ 0.0294, . . . }

for the group ⟨1,
√
2⟩ = Z[

√
2]. The obtained sequence generates the subgroup ⟨α, β⟩. Indeed,

write hn = anα+ bnβ for an, bn ∈ Z. Since hn+1 = (mn + 1)hn − α or hn+1 = α−mnhn
for the chosen integer mn, we have α ∈ ⟨hn, hn+1⟩ and the coefficient bn+1 of β in hn+1 is a
multiple of bn. Therefore, we have

⟨hn, hn+1⟩ = ⟨α, bnβ⟩,

and, since b1 = 1, the decreasing sequence {hn} is a generating set of the group ⟨α, β⟩.
In summary, for every dense group we can find a dense subgroup with a constructible set

of generators as a sequence {hn}n∈N of positive numbers decreasing and converging to zero.
Then, with such a sequence {hn}∞n=1, it is enough to consider the union of subgroups generated
by each hn: {khn : k ∈ Z, n ∈ N}, in order to obtain the results given here in the work, as
may be seen in Theorem 2.5. For any decreasing sequence {hn}n∈N converging to zero, the
union of subgroups generated by each hn is dense in R. With such a decreasing sequence,
Theorem 2.1 will be generalized further (Theorem 4.2 and Corollary 4.3).

3. POINT-WISE CONVERGENCE TO POLYNOMIAL

In this section, we investigate conditions on the point-wise convergence to a polynomial of
degree ≤ m on the dyadic set K. And we consider general cases: the set of randomly chosen
points (see Theorem 3.3 and Remark 3.4.) So that Theorem 3.1 is improved to Theorem 3.3.

Theorem 3.1. Let f be a continuous function defined on the whole real line and let {pn}∞n=1 be
a sequence of polynomials pn of degree ≤ m for an integer m ≥ 0. If {pn(x)}∞n=1 converges
to f(x) in K point-wise:

lim
n→∞

pn(x) = f(x), for all x ∈ K.

Then f is a polynomial of degree ≤ m and for each j ≥ 0,

lim
n→∞

p(j)n (x) = f (j)(x)
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uniformly on every bounded subset of the real line.

Proof. For each n ≥ 0, let

pn(x) = an0 + an1x+ · · ·+ anmx
m.

We shall show that if {pn(x)}∞n=1 converges to f(x) at every x ∈ K, then for each j =
0, 1, 2, · · · , {anj}∞n=1 converges to a real number, say aj ;

lim
n→∞

anj = aj , j = 0, 1, · · · ,m.

By linearity of the difference operator and the assumption that {pn(x)} converges to f(x) for
every x ∈ K which contains all integers, we have that

lim
n→∞

∇mpn(0) = lim
n→∞

m∑
k=0

(−1)k
(
m

k

)
pn(−k)

=

m∑
k=0

(−1)k
(
m

k

)
f(−k)

= ∇mf(0),

where ∇ is the backward difference with size h = 1. On the other hand, using the identities
m∑
k=0

(−1)k
(
m

k

)
kj =

{
0 if 0 ≤ j < m,
(−1)mm! if j = m

(3.1)

we have that

∇mpn(0) =

m∑
k=0

ank∇mxk|x=0 = anmm!.

Thus the sequence {anm}∞n=0 converges to am,

am := lim
n→∞

anm = ∇mf(0)/m!.

By induction on j = m,m − 1, · · · , 0, we assume that there exists a positive integer k ≤ m
such that for j = k, k + 1, · · · ,m, the sequence {anj}∞n=0 converges to aj , that is,

aj := lim
n→∞

anj , for j = k, k + 1, · · · ,m.

Then by the assumption and linearity , we have that limn→∞∇k−1pn(0) = ∇k−1f(0) and

lim
n→∞

∇k−1pn(0) = lim
n→∞

m∑
i=0

ani∇k−1xi
∣∣∣
x=0

= lim
n→∞

m∑
i=k−1

ani∇k−1xi
∣∣∣
x=0

= lim
n→∞

[
(k − 1)!an,k−1 +

m∑
i=k

ani∇k−1xi
∣∣∣
x=0

]
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which implies that

lim
n→∞

an,k−1 := (∇k−1f(0)−
m∑
i=k

ai∇k−1xi|x=0)/(k − 1)!.

So we have proved that there are numbers {ai}mi=0 such that

lim
n→∞

ani = ai, i = 0, 1, 2, · · · ,m.

Define a polynomial p(x) by

p(x) = a0 + a1x+ · · ·+ amx
m,

then from the convergence of coefficients {ani}∞,m
n=0,i=0, we can see that for each j ≥ 0,

lim
n→∞

p(j)n (x) = p(j)(x)

point-wisely for every real number x ∈ R and uniformly on every bounded subset of R. Also
since the set K is dense in R and f is continuous on R, f(x) = p(x) for all the real number x,
which proves the theorem. 2

Corollary 3.2. Let f be a function defined on the whole real line and let {pn} be a sequence
of polynomials pn of degree ≤ m for an integer m ≥ 0. If {pn(x)} converges point-wisely to
f(x) at every real number x :

lim
n→∞

pn(x) = f(x), for all x ∈ R,

then f is a polynomial of degree ≤ m and for each j ≥ 0,

lim
n→∞

p(j)n (x) = f (j)(x),

uniformly on every bounded subset of the real line.

Now we consider a more general case of polynomial convergence.

Theorem 3.3. Let {pn(x)}∞n=1 be a sequence of polynomials of degree ≤ m for some non-
negative integerm. Suppose that there arem+1 distinct numbers {xk}m+1

k=1 at which {pn(x)}∞n=1

converges, say,
lim
n→∞

pn(xk) = yk, k = 1, 2, · · · ,m+ 1,

then for each j ≥ 0 and any bounded subset Ω of R or C:

lim
n→∞

p(j)n (x) = p(j)(x) uniformly on Ω, (3.2)

where p(x) is the polynomial of degree ≤ m given by

p(x) =

m+1∑
k=1

ykℓk(x) (3.3)

for the Lagrange polynomials {ℓk(x)}m+1
k=1 for the numbers {xk}.
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Proof. The uniqueness of interpolation polynomial guarantees that each polynomial pn(x)
is written as

pn(x) =

m+1∑
k=1

pn(xk)ℓk(x), n = 1, 2, · · · , (3.4)

for the Lagrange polynomials {ℓk(x)}m+1
k=1 . Let j ≥ 0 be an integer. Differentiating j−times

the both sides of Equation (3.4) with respect to the variable of x, we have

p(j)n (x) =

m+1∑
k=1

pn(xk)ℓ
(j)
k (x), n = 1, 2, · · · . (3.5)

Since {ℓk(x)}m+1
k=1 are uniformly bounded on any bounded subset Ω, it is easily shown that

lim
n→∞

p(j)n (x) = lim
n→∞

m+1∑
k=1

pn(xk)ℓ
(j)
k (x)

=

m+1∑
k=1

ykℓ
(j)
k (x)

= p(j)(x) uniformly on Ω

where p(x) is the polynomial of degree ≤ m as in (3.3), which completes the proof. 2

Note that relations (3.5) show that for j = 0, 1, · · · ,m, the sequences of the coefficients of xj

in pn(x) also converge.

Remark 3.4. The convergence holds even if we replace the point-wise convergence by the
condition that there is a linearly independent set {Li}m+1

i=1 of linear functionals on Pm, the
space of all polynomials of degree ≤ m, such that for each k, {Lk(Pn)}∞n=1 converges to yk.
Then we have

lim
n→∞

p(j)n (x) =
m+1∑
k=1

yk ℓ̃
(j)
k (x) uniformly on Ω,

where {ℓ̃k(x)}m+1
k=1 is a linearly independent set in Pm which is biorthonormal with respect to

{Li}m+1
i=1 :

Li(ℓ̃j) = δij .

We may consult [4] for more details.

Note that m + 1 is the possible least number on the conditions which guarantee the results
obtained in Theorem 3.3 and Remark 3.4.

Corollary 3.5. Let Ω be a bounded subset of R or C consisting of at least m + 1 elements.
Then the space of all polynomials of degree ≤ m is a Banach space with the norm ∥ · ∥ defined
by

∥ p ∥ = sup
x∈Ω

| p(x) |.
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4. GENERALIZATIONS

Now, we consider more general cases for divided difference operators treated in Section 2,
using the polynomial convergence. From now on, let I = (a, b) be an interval of positive mea-
sure and we denote {hn}∞n=1 to be a decreasing sequence of positive numbers hn converging
to zero; for each n ≥ 1, hn > hn+1 and

lim
n→∞

hn = 0.

First, we characterize continuous functions f satisfying

∇hnf(khn) = 0, (4.1)

for every n ≥ 1 and k ∈ Z such that khn ∈ I.

Lemma 4.1. Let I be an interval of positive measure and x1 < x2 < · · · < xm+1 distinct
points in I. For i = 1, · · · ,m+ 1, let {xi,k}∞k=1 ⊂ I and {yi,k}∞k=1 be sequences such that

lim
k→∞

xi,k = xi and lim
k→∞

yi,k = yi for each i = 1, 2, . . . ,m+ 1

for some constants yk. Then the polynomials pm,k(x) of degree m interpolating to yi,k at xi,k
for i = 1, . . . ,m+ 1 converges uniformly on I to pm(x) of degree m,

lim
k→∞

pm,k(x) = pm(x) uniformly on I

where pm(x) is the interpolation polynomial satisfying pm(xj) = yj for j = 1, 2 . . . ,m+ 1.

Proof. For each k ≥ 1, we may write the interpolation polynomials pm,k(x) as

pm,k(x) =
m+1∑
j=1

yk,jℓk,j(x)

for the Lagrange polynomials ℓk,j(x) satisfying

ℓk,j(xk,i) = δi,j for i, j = 1, 2, . . . ,m+ 1.

In Section 2, we have shown that ℓk,j is given by

ℓk,j(x) =
wk(x)

w′
k(xk,j)(x− xk,j)

, wk(x) = (x− xk,1) · · · (x− xk,m+1). (4.2)

Fix j, we write the polynomials ℓk,j by

ℓk,j(x) =

m∑
r=0

ak,rx
r.

Now we consider the polynomials w′
k(xk,j)ℓk,j by

w′
k(xk,j)ℓk,j(x) =

m∑
r=0

bk,rx
r.
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Since the coefficients bk,r are linear combinations of multiplications of xk,1, xk,2, . . . , xm+1,
as we may see in (4.2), and the constants xk,i converge to xi as k tends to ∞, we have

lim
k→∞

bk,r = br, r = 0, 1, . . . ,m,

for some constants br. Consequently, with the limit

lim
k→∞

w′
k(xk,j) = lim

k→∞

∏
i ̸=j

(xk,j − xk,i) =
∏
i̸=j

(xj − xi),

we can see that
lim
k→∞

ak,r = ar, r = 0, 1, . . . ,m,

here ar is the coefficient of xr in the Lagrange polynomial ℓj(x)

ℓj(x) =
w(x)

w′(xj)(x− xj)
, w(x) = (x− x1) · · · (x− xm+1).

Since the interval I is bounded, we show that the interpolation polynomials pm,k(x) of degree
m interpolating to yi,k at xi,k for i = 1, . . . ,m+ 1,

pm,k(x) =
m+1∑
j=1

yk,jℓk,j(x),

converges uniformly on I to pm(x) of degree m,

lim
k→∞

pm,k(x) =
m+1∑
j=1

yjℓj(x), uniformly on I

where pm(x) :=
∑m+1

j=1 yjℓj(x) is the interpolation polynomial satisfying pm(xj) = yj for
j = 1, 2 . . . ,m+ 1. This completes the proof. 2

Now, we are ready to characterize continuous functions satisfying the equation (4.1)

Theorem 4.2. Let I be an interval of positive measure and let {hn}∞n=1 be a decreasing se-
quence of positive numbers which converges to zero. Let f be a function defined on a set
containing I such that for all x ∈ I and n ≥ 1, ∇m+1

hn
f(x) is well-defined. Assume that f

satisfies the equations
∇m+1

hn
f(khn) = 0

for every n ≥ 1 and k ∈ Z such that khn ∈ I. If f is continuous, then f is a polynomial of
degree ≤ m in I .

Proof. For each n ≥ 1, let In be the subset of I given by

In = {khn : khn ∈ I for some integer k} = I ∩ ⟨hn⟩.

Here, we may assume without lose of generality that each In contains at least m+ 1 elements.
Now choosem+1 points x1 < x2 < · · · < xm+1 in I such that x1 and xm+1 are not boundary
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points of I , and define ξ := mini=1,2,...,m |xi−xi+1| andN0 be an integer such that 2hN0 < ξ.
Then, for each n ≥ N0, there exists m+ 1 points xn,1 < xn,2 < · · · < xn,m+1 in In such that

|xn,i − xi| < hn, i = 1, . . . ,m+ 1.

This choice shows that for each i = 1, . . . ,m+ 1, xn,i converges to xi as n tends to ∞. Since
∇m+1

hn
f ≡ 0 in In, we can see that there exists a polynomial pn(x) of degree ≤ m such that

pn(x) = f(x), for all x ∈ In. (4.3)

In particular, pn is the polynomial interpolating to f(xn,i) at xn,i for i = 1, . . . ,m+1. The con-
tinuity of f shows that for each i = 1, . . . ,m+1, limn→∞ f(xn,i) = f(xi). Now, Lemma 4.1
implies that pn(x) converges uniformly to p(x), the polynomial of degree ≤ m interpolating
to f(xi) for i = 1, . . . ,m+ 1,

lim
n→∞

pn(x) = p(x), uniformly for x ∈ I.

Let t ∈ I be an arbitrary point. If t = xi for some i = 1, . . . ,m+ 1, then we have shown that
f(t) = p(t).
Now, we consider the case where t ̸= xi for any i = 1, . . . ,m + 1. Let ε > 0 be arbitrarily
given. Since f and p are continuous at x = t, there exists δ > 0 such that for every x ∈ I
satisfying |x− t| ≤ δ, we have

|f(x)− f(t)| ≤ ε/3 and |p(x)− p(t)| ≤ ε/3.

And the uniform convergence of pn to p in I implies that there exists an integer N1 such that

sup
x∈I

|pn(x)− p(x)| ≤ ε

3
, for n ≥ N1.

Then for a sufficiently large n ≥ N1, there exists a point tn ∈ In such that |t− tn| ≤ δ. In this
case, we have f(tn) = pn(tn) (see (4.3)) so that we obtain

|f(t)− p(t)| ≤ |f(t)− f(tn)|+ |pn(tn)− p(tn)|+ |p(tn)− p(t)|

≤ ε

3
+
ε

3
+
ε

3
= ε.

Since ε is arbitrary, therefore, we have that f(t) = p(t). This completes the proof. 2

Corollary 4.3. Let {hn}∞n=1 be a decreasing sequence of positive numbers which is converging
to zero. Let f be a continuous function defined on R and assume that f satisfies the equations

∇hnf(khn) = 0 for every n ≥ 1 and k ∈ Z.
Then f is a polynomial of degree ≤ m.

Proof. We cover R by a chain of intersecting intervals {Jk}k∈Z such that ∇m+1
hn

f(x) is
well-defined in Jk for all k ∈ Z. In each interval, f is equal to a polynomial pk(x) of degree
≤ m by Theorem 4.2. Since polynomials pk−1(x) and pk(x) of degree ≤ m have the same
values at the all points in the intersection of Jk−1 and Jk, the two polynomials are equal. As a
consequence, f(x) is equal to one polynomial on the set of all real numbers. 2
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In the following, we relate divided differences to derivatives, which is a mean value theorem
for equally spaced points.

Theorem 4.4. Let f(x) ∈ C[a, b] and suppose that f (n)(x) exists at each point of (a, b), then
for b ≥ x0 > x1 = x0 − h > · · · > xn = x0 − nh ≥ a, there exists a point ξ ∈ (xn, x0)
satisfying

∇n
hf(x0) = hnf (n)(ξ), xn < ξ < x0.

Proof. From the definition of the forward and backward operators, we can see that

∇n
hf = ∆n

hf(· − nh).

Then the theorem follows directly from Corollary 3.4.4 in [4]. 2

A polynomial p(x) of degree ≤ m satisfies the difference equation

∇m+1
h p(x) = 0

for any h > 0 and the differential equation

dm+1p(x)

dxm+1
= 0

as well. That is, we may regard the difference operator ∇n
h as the discretization of the dif-

ferential operator Dn(D = d/dx). In the following we extend to differential operators of the
form

m∑
k=0

akDk,

where ak are real numbers.

Theorem 4.5. Let {hn}∞n=1 be a decreasing sequence of positive numbers which converges
to zero and let f ∈ Cm(I) be a function such that for all x ∈ I and n ≥ 1, ∇m+1

hn
f(x) is

well-defined. Assume that

lim
n→∞

m∑
k=0

akh
−k
n ∇k

hn
f(x) = 0, for all x ∈ I, (4.4)

then
m∑
k=0

akf
(k)(x) = 0, for all x ∈ I. (4.5)

Proof. Let x be chosen arbitrarily in (a, b) and fixed. Since {hn}∞n=1 is a decreasing se-
quence convergent to zero, we may assume that for all n ≥ 1, xn > a. From Theorem 4.4, we
have the relation

∇k
hn
f(x) = hknf

(k)(ξk,n), x− khn < ξk,n < x.
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By the assumption that f ∈ Cm(I) and f satisfies the condition (4.4), we have that limn→∞ f (k)

(ξk,n) = f (k)(x) and

0 = lim
n→∞

m∑
k=0

akh
−k
n ∇k

hn
f(x)

= lim
n→∞

m∑
k=0

akh
−k
n ∇k

hn
f(ξk,n) (x− khn < ξk,n < x)

=

m∑
k=0

ak( lim
n→∞

f (k)(ξk,n))

=

m∑
k=0

akf
(k)(x),

which implies that
m∑
k=0

akf
(k)(x) = 0.

Since x is chosen arbitrarily, f satisfies the equation (4.5) for all x ∈ I. 2

The converse of Theorem 4.5 is obvious. But we can see that a function f satisfying (4.5) may
not satisfy the difference equation

m∑
k=0

akh
−k
n ∇k

hn
f(x) = 0

in general. The functions satisfying the differential equation (4.5) play fundamental roles for
the construction of a subdivision scheme for Cm−2-exponential B-splines, whose pieces are
solutions to the differential equation (4.5). For details, we refer to [5] and [2].
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