DOI QR코드

DOI QR Code

SOME RESULTS ON UNIQUENESS OF CERTAIN TYPE OF SHIFT POLYNOMIALS SHARING A SMALL FUNCTION

  • Received : 2021.07.14
  • Accepted : 2021.09.21
  • Published : 2022.02.28

Abstract

The purpose of the paper is to study the uniqueness problems of certain type of difference polynomials sharing a small function. With the concept of weakly weighted sharing and relaxed weighted sharing we obtain some results which extend and generalize some results due to P. Sahoo and G. Biswas [Tamkang Journal of Mathematics, 49(2)(2018), 85-97].

Keywords

References

  1. A. Banerjee & S. Majumder: On the uniqueness of certain types of differential-difference polynomials. Anal. Math., 43 (2017), no. 3, 415-444. https://doi.org/10.1007/s10476-017-0402-3
  2. A. Banerjee & S. Mukherjee: Uniqueness of meromorphic functions concerning differential monomials sharing the same value. Bull. Math. Soc. Sci. 50 (2007), 191-206.
  3. M.R. Chen & Z.X. Chen: Properties of difference polynomials of entire functions with finite order. Chinese Ann. Math. Ser. A 33 (2012), 359-374. https://doi.org/10.3969/j.issn.1000-8314.2012.03.010
  4. Y.M. Chiang & S.J. Feng: On the Nevanlinna characteristic of f(z + η) and difference equations in the complex plane. Ramanujan J., 16 (2008), 105-129. https://doi.org/10.1007/s11139-007-9101-1
  5. R.G. Halburd & R.J. Korhonen: Nevanlinna theory for the difference operator. Ann. Acad. Sci. Fenn. Math. 31 (2006), 463-478.
  6. R.G. Halburd & R.J. Korhonen: Difference analogue of the lemma on the logarithmic derivative with application to difference equations. J. Math. Anal. Appl. 314 (2006), 477-487. https://doi.org/10.1016/j.jmaa.2005.04.010
  7. W.K. Hayman: Meromorphic Functions. Oxford Mathematical Monographs Clarendon Press, Oxford 1964.
  8. I. Laine: Nevanlinna Theory and Complex Differential Equations. Walter de Gruyter, Berlin/Newyork, 1993.
  9. I. Laine & C.C. Yang: Value distribution of difference polynomials. Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), 148-151. https://doi.org/10.3792/pjaa.83.148
  10. S.H. Lin & W.C. Lin: Uniqueness of meromorphic functions concerning weakly weighted sharing. Kodai Math. J. 29 (2006), 269-280. https://doi.org/10.2996/kmj/1151936441
  11. X.Q. Lin & W.C. Lin: Uniqueness of entire functions sharing one value. Acta Math. Sci. Ser. B. Engl. Ed. 31 (2011), 1062-1076.
  12. K. Liu & L.Z. Yang: Value distribution of the difference operator. Arch. Math. 92 (2009), 270-278. https://doi.org/10.1007/s00013-009-2895-x
  13. X. Luo & W.C. Lin: Value sharing results for shifts of meromorphic functions. J. Math. Anal. Appl. 377 (2011), 441-449. https://doi.org/10.1016/j.jmaa.2010.10.055
  14. C. Meng: Uniqueness of entire functions concerning difference polynomials. Math. Bo-hem. 139 (2014), 89-97. https://doi.org/10.21136/mb.2014.143638
  15. X.G. Qi, L.Z. Yang & K. Liu: Uniqueness and periodicity of meromorphic functions concerning the difference operator. Comput. Math. Appl. 60 (2010), 1739-1746. https://doi.org/10.1016/j.camwa.2010.07.004
  16. B. Saha: On the uniqueness of certain type of shift polynomials sharing a small function. Korean J. Math. 28 (2020), no. 4, 871-888.
  17. P. Sahoo: Uniqueness of entire functions related to difference polynomials. Commun. Math. Stat. 3 (2015), 227-238. https://doi.org/10.1007/s40304-015-0057-y
  18. P. Sahoo & G. Biswas: Weighted sharing and uniqueness of certain type of differential-difference polynomials. Palestine J. Math. 7 (2018), no. 1, 121-130.
  19. P. Sahoo & G. Biswas: Some results on uniqueness of entire functions concerning difference polynomials. Tamk. J. Math. 49 (2018), no. 2, 85-97. https://doi.org/10.5556/j.tkjm.49.2018.2198
  20. H.X. Yi & C.C. Yang: Uniqueness Theory of Meromorphic Functions. Science Press, Beijing, 1995.
  21. J.L. Zhang: Value distribution and shared sets of differences of meromorphic functions. J. Math. Anal. Appl. 367 (2010), 401-408. https://doi.org/10.1016/j.jmaa.2010.01.038
  22. J.L. Zhang & L.Z. Yang: Some results related to a conjecture of R. Bruck. J. Inequal. Pure Appl. Math. 8 (2007), Art. 18.