• 제목/요약/키워드: difference polynomials

검색결과 71건 처리시간 0.022초

FRACTIONAL CHEBYSHEV FINITE DIFFERENCE METHOD FOR SOLVING THE FRACTIONAL BVPS

  • Khader, M.M.;Hendy, A.S.
    • Journal of applied mathematics & informatics
    • /
    • 제31권1_2호
    • /
    • pp.299-309
    • /
    • 2013
  • In this paper, we introduce a new numerical technique which we call fractional Chebyshev finite difference method (FChFD). The algorithm is based on a combination of the useful properties of Chebyshev polynomials approximation and finite difference method. We tested this technique to solve numerically fractional BVPs. The proposed technique is based on using matrix operator expressions which applies to the differential terms. The operational matrix method is derived in our approach in order to approximate the fractional derivatives. This operational matrix method can be regarded as a non-uniform finite difference scheme. The error bound for the fractional derivatives is introduced. The fractional derivatives are presented in terms of Caputo sense. The application of the method to fractional BVPs leads to algebraic systems which can be solved by an appropriate method. Several numerical examples are provided to confirm the accuracy and the effectiveness of the proposed method.

STABILITY OF HAHN DIFFERENCE EQUATIONS IN BANACH ALGEBRAS

  • Abdelkhaliq, Marwa M.;Hamza, Alaa E.
    • 대한수학회논문집
    • /
    • 제33권4호
    • /
    • pp.1141-1158
    • /
    • 2018
  • Hahn difference operator $D_{q,{\omega}}$ which is defined by $$D_{q,{\omega}}g(t)=\{{\frac{g(gt+{\omega})-g(t)}{t(g-1)+{\omega}}},{\hfill{20}}\text{if }t{\neq}{\theta}:={\frac{\omega}{1-q}},\\g^{\prime}({\theta}),{\hfill{83}}\text{if }t={\theta}$$ received a lot of interest from many researchers due to its applications in constructing families of orthogonal polynomials and in some approximation problems. In this paper, we investigate sufficient conditions for stability of the abstract linear Hahn difference equations of the form $$D_{q,{\omega}}x(t)=A(t)x(t)+f(t),\;t{\in}I$$, and $$D^2{q,{\omega}}x(t)+A(t)D_{q,{\omega}}x(t)+R(t)x(t)=f(t),\;t{\in}I$$, where $A,R:I{\rightarrow}{\mathbb{X}}$, and $f:I{\rightarrow}{\mathbb{X}}$. Here ${\mathbb{X}}$ is a Banach algebra with a unit element e and I is an interval of ${\mathbb{R}}$ containing ${\theta}$.

ON THE EXISTENCE OF SOLUTIONS OF FERMAT-TYPE DIFFERENTIAL-DIFFERENCE EQUATIONS

  • Chen, Jun-Fan;Lin, Shu-Qing
    • 대한수학회보
    • /
    • 제58권4호
    • /
    • pp.983-1002
    • /
    • 2021
  • We investigate the non-existence of finite order transcendental entire solutions of Fermat-type differential-difference equations [f(z)f'(z)]n + P2(z)fm(z + 𝜂) = Q(z) and [f(z)f'(z)]n + P(z)[∆𝜂f(z)]m = Q(z), where P(z) and Q(z) are non-zero polynomials, m and n are positive integers, and 𝜂 ∈ ℂ \ {0}. In addition, we discuss transcendental entire solutions of finite order of the following Fermat-type differential-difference equation P2(z) [f(k)(z)]2 + [αf(z + 𝜂) - 𝛽f(z)]2 = er(z), where $P(z){\not\equiv}0$ is a polynomial, r(z) is a non-constant polynomial, α ≠ 0 and 𝛽 are constants, k is a positive integer, and 𝜂 ∈ ℂ \ {0}. Our results generalize some previous results.

SOME RESULTS ON UNIQUENESS OF MEROMORPHIC SOLUTIONS OF DIFFERENCE EQUATIONS

  • Gao, Zong Sheng;Wang, Xiao Ming
    • 대한수학회논문집
    • /
    • 제32권4호
    • /
    • pp.959-970
    • /
    • 2017
  • In this paper, we investigate the transcendental meromorphic solutions with finite order of two different types of difference equations $${\sum\limits_{j=1}^{n}}a_jf(z+c_j)={\frac{P(z,f)}{Q(z,f)}}={\frac{{\sum_{k=0}^{p}}b_kf^k}{{\sum_{l=0}^{q}}d_lf^l}}$$ and $${\prod\limits_{j=1}^{n}}f(z+c_j)={\frac{P(z,f)}{Q(z,f)}={\frac{{\sum_{k=0}^{p}}b_kf^k}{{\sum_{l=0}^{q}}d_lf^l}}$$ that share three distinct values with another meromorphic function. Here $a_j$, $b_k$, $d_l$ are small functions of f and $a_j{\not{\equiv}}(j=1,2,{\ldots},n)$, $b_p{\not{\equiv}}0$, $d_q{\not{\equiv}}0$. $c_j{\neq}0$ are pairwise distinct constants. p, q, n are non-negative integers. P(z, f) and Q(z, f) are two mutually prime polynomials in f.

UNIQUENESS OF MEROMORPHIC SOLUTIONS OF A CERTAIN TYPE OF DIFFERENCE EQUATIONS

  • Chen, Jun-Fan;Lin, Shu-Qing
    • 대한수학회보
    • /
    • 제59권4호
    • /
    • pp.827-841
    • /
    • 2022
  • In this paper, we study the uniqueness of two finite order transcendental meromorphic solutions f(z) and g(z) of the following complex difference equation A1(z)f(z + 1) + A0(z)f(z) = F(z)e𝛼(z) when they share 0, ∞ CM, where A1(z), A0(z), F(z) are non-zero polynomials, 𝛼(z) is a polynomial. Our result generalizes and complements some known results given recently by Cui and Chen, Li and Chen. Examples for the precision of our result are also supplied.

Eulerian-Lagrangian 방법을 이용한 1차원 종확산방정식의 수치모형 (Numerical Modeling of One-Dimensional Longitudinal Dispersion Equation using Eulerian-Lagrangian Method)

  • 서일원;김대근
    • 물과 미래
    • /
    • 제27권2호
    • /
    • pp.155-166
    • /
    • 1994
  • Eulerian-Lagrangian 방법을 이용하여 1차원 종확산방정식의 수치모형을 비교·분석하였다. 본 연구에서서 비교·분석한 모형은 지배방정식을 연산자 분리방법에 의해서 이송만을 지배하는 이송방정식과 확산만을 지배하는 확산방정식으로 분리한다. 이송방정식은 특성곡선을 따라서 유체입자를 추적하는 특성곡선법을 사용하여 해를 구하고, 그 결과를 고정된 Eulerian 격자상에 보간하였고, 확산방정식은 상기 고정격자상에서 Crank-Nicholson 유한차분법을 사용하여 해를 구하였다. 이송방정식의 풀이에서 다양한 보간방법이 적용되었는데, 일반적으로 Hermite 보간다항식을 사용한 경우가 Lagrange 보간다항식을 사용한 경우보다 수치확산 및 수치진동 등의 오차를 최소화할 수 있어서 더욱 우수한 것으로 밝혀졌다.

  • PDF

복합재 케이스의 실린더 변형률을 이용한 킥모터 연소 압력 계산 (Combustion Pressure Calculation of Kick Motor using Stain on Cylinder Section of Composite Case)

  • 이무근;길경섭;이경원
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.777-780
    • /
    • 2010
  • 실린더 중앙 원주방향 변형률을 바탕으로 킥모터의 연소 압력을 계산하는 방법을 제안하였다. 지상연소시험으로부터 연소시간 동안의 변형률-압력 비(strain ratio)를 근사하는 다항식을 계산하였다. 이 다항식에 비행 중 측정한 변형률을 대입하여 비행 중 연소압력으로 변환하였다. 실제 비행 중에 측정한 압력과 비교한 결과 전체적인 변화 양상이 일치함을 확인하였으며 최대 약 10psi 수준의 차이가 나타난 것을 볼 수 있었다.

  • PDF

Elliptical 함수, Legendre 다항식을 이용한 단층, 다전류 솔레노이드의 자장균일도 비교 (Comparison of Uniformity of Calculated-magnetic Field in a Single-layer Solenoid with Multi-current by Using Elliptical Function and Legendre Polynomials)

  • 정정효;박포규;김윤배
    • 한국자기학회지
    • /
    • 제9권5호
    • /
    • pp.227-233
    • /
    • 1999
  • 단층 솔레노이드의 길이 1.02m, 평균방경 0.11497m, 단위길이당 권선수 1000turns/m에서 Eooiptical 함수와 Legendre 다항식, Biot-Savart 법칙을 이용하여 단층 솔레노이드에 다전류를 인가하여 중심부근에서 자장균일도를 향상시키는 계산방법, 자장분포도 및 반지름 변화에 따른 자장균일도의 차이를 구하였다. 단전류 방법의 경우 1$\times$10-8의 자장균일도 공간이 중심에서 0.1cm 미만이지만, 5-current 방법은 8cm 정도로 80배정도 확대됨을 알 수 있고, 단층 단전류를 사용한 솔레노이드와 비교하였을 때 길이가 0.16km인 경우와 같은 효과를 얻었다. 또한 각각의 계산방법에 대한 자장오차를 비교분석하였다.

  • PDF

증승개방법(增乘開方法)과 다항방정식(多項方程式)의 해(解) (Zengcheng Kaifangfa and Zeros of Polynomials)

  • 홍성사;홍영희;김창일
    • 한국수학사학회지
    • /
    • 제33권6호
    • /
    • pp.303-314
    • /
    • 2020
  • Extending the method of extractions of square and cube roots in Jiuzhang Suanshu, Jia Xian introduced zengcheng kaifangfa in the 11th century. The process of zengcheng kaifangfa is exactly the same with that in Ruffini-Horner method introduced in the 19th century. The latter is based on the synthetic divisions, but zengcheng kaifangfa uses the binomial expansions. Since zengcheng kaifangfa is based on binomial expansions, traditional mathematicians in East Asia could not relate the fact that solutions of polynomial equation p(x) = 0 are determined by the linear factorization of p(x). The purpose of this paper is to reveal the difference between the mathematical structures of zengcheng kaifangfa and Ruffini-Honer method. For this object, we first discuss the reasons for zengcheng kaifangfa having difficulties to connect solutions with linear factors. Furthermore, investigating multiple solutions of equations constructed by tianyuanshu, we show differences between two methods and the structure of word problems in the East Asian mathematics.

SETS AND VALUE SHARING OF q-DIFFERENCES OF MEROMORPHIC FUNCTIONS

  • Qi, Xiao-Guang;Yang, Lian-Zhong
    • 대한수학회보
    • /
    • 제50권3호
    • /
    • pp.731-745
    • /
    • 2013
  • In this paper, we investigate uniqueness problems of certain types of $q$-difference polynomials, which improve some results in [20]. However, our proof is different from that in [20]. Moreover, we obtain a uniqueness result in the case where $q$-differences of two entire functions share values as well. This research also shows that there exist two sets, such that for a zero-order non-constant meromorphic function $f$ and a non-zero complex constant $q$, $E(S_j,f)=E(S_j,{\Delta}_qf)$ for $j=1,2$ imply $f(z)=t{\Delta}_qf$, where $t^n=1$. This gives a partial answer to a question of Gross concerning a zero order meromorphic function $f(z)$ and $t{\Delta}_qf$.