• 제목/요약/키워드: difference polynomials

검색결과 71건 처리시간 0.021초

ON THE MAXIMUM AND MINIMUM MODULUS OF POLYNOMIALS ON CIRCLES

  • Chong, Han Kyol;Kim, Seon-Hong
    • 대한수학회논문집
    • /
    • 제33권4호
    • /
    • pp.1303-1308
    • /
    • 2018
  • In this paper, we consider both maximum modulus and minimum modulus on a circle of some polynomials. These give rise to interesting examples that are about moduli of Chebyshev polynomials and certain sums of polynomials on a circle. Moreover, we obtain some root locations of difference quotients of Chebyshev polynomials.

On the 3-Ranks and Characteristic Polynomials of HKN and Lin Difference Sets

  • Jong-Seon No;Dong-Joon Shin
    • 한국통신학회논문지
    • /
    • 제26권7A호
    • /
    • pp.1257-1263
    • /
    • 2001
  • In the paper, the p-ranks and characteristics polynomials of cyclic difference sets are derived by expanding the trace expression of their characteristic sequences. By using this method, it is shown that the 3-ranks and characteristic polynomials of Helleseth-Kumar-Martinsen (HKM) difference set and Lin difference set can be easily obtained.

  • PDF

STUDY OF ENTIRE AND MEROMORPHIC FUNCTION FOR LINEAR DIFFERENCE-DIFFERENTIAL POLYNOMIALS

  • S. RAJESHWARI;P. NAGASWARA
    • Journal of Applied and Pure Mathematics
    • /
    • 제5권5_6호
    • /
    • pp.281-289
    • /
    • 2023
  • We investigate the value distribution of difference-differential polynomials of entire and meromorphic functions, which can be gazed as the Hayman's Conjecture. And also we study the uniqueness and existence for sharing common value of difference-differential polynomials.

A DIFFERENCE EQUATION FOR MULTIPLE KRAVCHUK POLYNOMIALS

  • Lee, Dong-Won
    • 대한수학회지
    • /
    • 제44권6호
    • /
    • pp.1429-1440
    • /
    • 2007
  • Let ${K^{(\vec{p};N)}_{\vec{n}}(x)}$ be a multiple Kravchuk polynomial with respect to r discrete Kravchuk weights. We first find a lowering operator for multiple Kravchuk polynomials ${K^{(\vec{p};N)}_{\vec{n}}(x)}$ in which the orthogonalizing weights are not involved. Combining the lowering operator and the raising operator by Rodrigues# formula, we find a (r+1)-th order difference equation which has the multiple Kravchuk polynomials ${K^{(\vec{p};N)}_{\vec{n}}(x)}$ as solutions. Lastly we give an explicit difference equation for ${K^{(\vec{p};N)}_{\vec{n}}(x)}$ for the case of r=2.

UNIQUENESS OF CERTAIN TYPES OF DIFFERENCE-DIFFERENTIAL POLYNOMIALS SHARING A SMALL FUNCTION

  • RAJESHWARI, S.;VENKATESWARLU, B.;KUMAR, S.H. NAVEEN
    • Journal of applied mathematics & informatics
    • /
    • 제39권5_6호
    • /
    • pp.839-850
    • /
    • 2021
  • In this paper, we investigate the uniqueness problems of certain types of difference-differential polynomials of entire functions sharing a small function. The results of the paper improve and generalize the recent results due to Biswajit Saha [18].

THE RESULTS ON UNIQUENESS OF LINEAR DIFFERENCE DIFFERENTIAL POLYNOMIALS WITH WEAKLY WEIGHTED AND RELAXED WEIGHTED SHARING

  • HARINA P. WAGHAMORE;M. ROOPA
    • Journal of applied mathematics & informatics
    • /
    • 제42권3호
    • /
    • pp.549-565
    • /
    • 2024
  • In this paper, we investigate the uniqueness of linear difference differential polynomials sharing a small function. By using the concepts of weakly weighted and relaxed weighted sharing of transcendental entire functions with finite order, we obtained the corresponding results, which improve and extend some results of Chao Meng [14].

THE RECURRENCE COEFFICIENTS OF THE ORTHOGONAL POLYNOMIALS WITH THE WEIGHTS ωα(x) = xα exp(-x3 + tx) AND Wα(x) = |x|2α+1 exp(-x6 + tx2 )

  • Joung, Haewon
    • Korean Journal of Mathematics
    • /
    • 제25권2호
    • /
    • pp.181-199
    • /
    • 2017
  • In this paper we consider the orthogonal polynomials with weights ${\omega}_{\alpha}(x)=x^{\alpha}{\exp}(-x^3+tx)$ and $W_{\alpha}(x)={\mid}x{\mid}^{2{\alpha}+1}{\exp}(-x^6+tx^2)$. Using the compatibility conditions for the ladder operators for these orthogonal polynomials, we derive several difference equations satisfied by the recurrence coefficients of these orthogonal polynomials. We also derive differential-difference equations and second order linear ordinary differential equations satisfied by these orthogonal polynomials.

A NOTE ON (p, q)-ANALOGUE TYPE OF FROBENIUS-GENOCCHI NUMBERS AND POLYNOMIALS

  • Khan, Waseem A.;Khan, Idrees A.
    • East Asian mathematical journal
    • /
    • 제36권1호
    • /
    • pp.13-24
    • /
    • 2020
  • The main purpose of this paper is to introduce Apostol type (p, q)-Frobenius-Genocchi numbers and polynomials of order α and investigate some basic identities and properties for these polynomials and numbers including addition theorems, difference equations, derivative properties, recurrence relations. We also obtain integral representations, implicit and explicit formulas and relations for these polynomials and numbers. Furthermore, we consider some relationships for Apostol type (p, q)-Frobenius-Genocchi polynomials of order α associated with (p, q)-Apostol Bernoulli polynomials, (p, q)-Apostol Euler polynomials and (p, q)-Apostol Genocchi polynomials.

ON HIGHER ORDER (p, q)-FROBENIUS-GENOCCHI NUMBERS AND POLYNOMIALS

  • KHAN, WASEEM A.;KHAN, IDREES A.;KANG, J.Y.
    • Journal of applied mathematics & informatics
    • /
    • 제37권3_4호
    • /
    • pp.295-305
    • /
    • 2019
  • In the present paper, we introduce (p, q)-Frobenius-Genocchi numbers and polynomials and investigate some basic identities and properties for these polynomials and numbers including addition theorems, difference equations, derivative properties, recurrence relations and so on. Then, we provide integral representations, implicit and explicit formulas and relations for these polynomials and numbers. We consider some relationships for (p, q)-Frobenius-Genocchi polynomials of order ${\alpha}$ associated with (p, q)-Bernoulli polynomials, (p, q)-Euler polynomials and (p, q)-Genocchi polynomials.