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ON HIGHER ORDER (p, q)-FROBENIUS-GENOCCHI

NUMBERS AND POLYNOMIALS†

WASEEM A. KHAN∗, IDREES A. KHAN AND J.Y. KANG

Abstract. In the present paper, we introduce (p, q)-Frobenius-Genocchi

numbers and polynomials and investigate some basic identities and proper-
ties for these polynomials and numbers including addition theorems, differ-

ence equations, derivative properties, recurrence relations and so on. Then,

we provide integral representations, implicit and explicit formulas and re-
lations for these polynomials and numbers. We consider some relation-

ships for (p, q)-Frobenius-Genocchi polynomials of order α associated with

(p, q)-Bernoulli polynomials, (p, q)-Euler polynomials and (p, q)-Genocchi
polynomials.
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1. Introduction

Throughout this presentation, we use the following standard notions N =
{1, 2, · · · }, N0 = {0, 1, 2, · · · } = N ∪ {0}, Z− = {−1,−2, · · · }. Also as usual Z
denotes the set of integers, R denotes the set of real numbers and C denotes the
set of complex numbers.

The (p, q)-numbers are defined as

[n]p,q = pn−1 + pn−2q + pn−3q2 + · · ·+ pqn−2 + qn−1 =
pn − qn

p− q
.
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We can write easily that [n]p,q = pn−1[n]q/p, where [n]q/p is the q-number in

q-calculus given by [n]q/p = (q/p)n−1
(q/p)−1 . Thereby this implies that (p, q)-numbers

and q-numbers are different, that is, we cannot obtain (p, q)-numbers just by
substituting q by q/p in the definition of q-numbers. In the case of p = 1, (p, q)-
numbers reduce to q-numbers,(see [6, 7]).

The (p, q)-derivative of a function f with respect to x is defined by

Dp,qf(x) = Dp,qf(x) =
f(px)− f(qx)

(p− q)x
, (x 6= 0) (1.1)

and (Dp,qf(0)) = f
′
(0), provided that f is differentiable at 0. The number

(p, q)-derivative operator holds the following properties

Dp,q(f(x)g(x)) = g(p(x))Dp,qf(x) + f(qx)Dp,qg(x), (1.2)

and

Dp,q

(
f(x)

g(x)

)
=
g(qx)Dp,qf(x)− f(qx)Dp,qg(x)

g(px)g(qx)
. (1.3)

The (p, q)-analogue of (x+ a)n is given by

(x+ a)np,q = (x+ a)(px+ aq) · · · (pn−2x+ aqn−2)(pn−1x+ aqn−1), n ≥ 1

=

n∑
k=0

(
n

k

)
p,q

p(
n
2)q(

n−k
2 )xkan−k,

where the (p, q)-Gauss Binomial coefficients
(
n
k

)
p,q

and (p, q)-factorial [n]p,q! are

defined by(
n
k

)
p,q

=
[n]p,q !

[n−k]p,q![k]p,q !
(n ≥ k) and [n]p,q! = [n]p,q · · · [2]p,q[1]p,q, (n ∈ N).

The (p, q)-exponential function are defined by

ep,q(x) =

∞∑
n=0

p(
n
2)xn

[n]p,q!
and Ep,q(x) =

∞∑
n=0

q(
n
2)xn

[n]p,q!
,

holds the identities

ep,q(x)Ep,q(−x) = 1 and ep−q−(x) = Ep,q(x), (1.4)

and have the (p, q)-derivatives

Dp,qep,q(x) = ep,q(px) and Dp,qEp,q(x) = Ep,q(qx). (1.5)

The definition (p, q)-integral is defined by∫ a

0

f(x)dp,qx = (p− q)a
∞∑
k=0

pk

qk+1
f

(
a
pk

qk+1

)
,
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in conjunction with∫ b

a

f(x)dp,qx =

∫ b

0

f(x)dp,qx−
∫ a

0

f(x)dp,qx, (see [19]). (1.6)

The generalized (p, q)-Bernoulli polynomials, the generalized (p, q)-Euler poly-
nomials and the generalized (p, q)-Genocchi polynomials are defined by means
of the following generating function as follows (see[1-20]):

(
t

ep,q(t)− 1

)α
ep,q(xt) =

∞∑
n=0

B(α)
n (x : p, q)

tn

[n]p,q!
, | t |< 2π, (1.7)

(
2

ep,q(t) + 1

)α
ep,q(xt) =

∞∑
n=0

E(α)
n (x : p, q)

tn

[n]p,q!
, | t |< π, (1.8)

and (
2t

ep,q(t) + 1

)α
ep,q(xt) =

∞∑
n=0

G(α)
n (x : p, q)

tn

[n]p,q!
, | t |< π. (1.9)

It is clear that

B(α)
n (0 : p, q) = B(α)

n (p, q) , E(α)
n (0 : p, q) = E(α)

n (p, q),

and

G(α)
n (0 : p, q) = G(α)

n (p, q) (n ∈ N).

Very recently, Yaşar and Özarslan [20] introduced Frobenius-Genocchi poly-
nomials are defined by means of the following generating relation:

(1− λ)t

et − λ
ext =

∞∑
n=0

GFn (x;λ)
tn

n!
. (1.10)

Taking λ = −1 in (1.10), we get the Genocchi polynomials

2t

et + 1
ext =

∞∑
n=0

Gn(x)
tn

n!
, | t |< π. (1.11)

The following section provides some identities and properties of (p, q)-Frobenius-
Genocchi numbers of order α involving addition property, difference equations,
derivative properties, recurrence relationships. We also provide integral rep-
resentations, implicit and explicit formulas and relations for mentioned poly-
nomials and numbers. By using generating function of the polynomial stated
in Definition (2.1), we derive some relationship for (p, q)-Frobenius Genocchi
polynomials of order α related to (p, q)-Bernoulli polynomials, the (p, q)-Euler
polynomials and the (p, q)-Genocchi polynomials.
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2. Definition and properties of the (p, q)-Frobenius-Genocchi

polynomials of order α, g
(α)
n (x;u : p, q)

In this section, we introduce and investigate (p, q)-Frobenius-Genocchi poly-
nomials of order α and its properties.

Definition 2.1. The (p, q)-Frobenius-Genocchi polynomials g
(α)
n (x ; u : p, q) of

order α are defined by means of the following generating function:(
(1− u)t

ep,q(t)− u

)α
ep,q(xt) =

∞∑
n=0

g(α)n (x;u : p, q)
tn

[n]p,q!
, (2.1)

where α is suitable (real or complex) parameter, p, q ∈ C with 0 <| q |<| p |≤ 1
and u ∈ C/{1}.

Remark 2.1. For x = 0 and α = 1 in (2.1), the result reduces to(
(1− u)t

ep,q(t)− u

)
=

∞∑
n=0

gn(u : p, q)
tn

[n]p,q !
, (2.2)

where gn(u : p, q) denotes the (p, q)-Frobenius-Genocchi number.

Remark 2.2. On setting u = −1, equation (2.1) reduces to(
2t

ep,q(t) + 1

)α
ep,q(xt) =

∞∑
n=0

G(α)
n (x : p, q)

tn

[n]p,q !
, (2.3)

where G
(α)
n (x : p, q) denotes the (p, q)-Genocchi polynomials of order α, (see [6]).

From (2.1), we have

g(1)
n (x ; u : p, q) := gn(x ; u : p, q),

g(α)
n (x ; u : p, q)|p=1 := g(α)

n,q (x ; u), (see [17]),

lim
p=1
q→1−

g(α)
n (x ; u : p, q) = G(α)

n (x ; u), (see [13, 14]).

From Definition (2.1), we give the following theorems:

Theorem 2.2. The following relationship holds true:

g(α)
p,q (Dp,q)xn =

n∑
k=0

(
n
k

)
p,q

g
(α)
k (u : p, q)xn−k . (2.4)
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Proof. By means of the (p, q)-derivative operator Dp,q, we have

g(α)
p,q (Dp,q)xn = g(α)

p,q

(
∂

∂p,qx

)
xn =

∞∑
k=0

g
(α)
n (u : p, q)

[k ]p,q!

(
∂

∂p,qx

)k

xn

=

n∑
k=0

g
(α)
k (u : p, q)

[n]p,q !

[k ]p,q![n − k ]p,q !
xn−k

=

n∑
k=0

(
n
k

)
p,q

g
(α)
k (u : p, q)xn−k .

Therefore, we complete proof ot Theorem 2.2. �

Here, we state a relationship of (p, q)-Frobenius-Genocchi polynomials of or-
der α and (p, q)-Frobenius-Genocchi numbers of order α.

Theorem 2.3. The following relationship holds true:

g(α)
n (x ; u : p, q) =

n∑
k=0

(
n
k

)
p,q

p(n−k
2 )g

(α)
k (u : p, q)xn−k . (2.5)

Proof. By using (2.1), we have
∞∑
n=0

g(α)
n (x ; u : p, q)

tn

[n]p,q !
=

(
(1 − u)t

ep,q(t)− u

)α
ep,q(xt)

=

n∑
k=0

g
(α)
k (u : p, q)

tk

[k ]p,q !

∞∑
n=0

p(n
2)xn tn

[n]p,q !

=

∞∑
n=0

(
n∑
k=0

(
n
k

)
p,q

p(
n−k

2 )g
(α)
k (u : p, q)xn−k

)
tn

[n]p,q!
.

Comparing the coefficients of tn

[n]p,q !
of both sides, we arrive at the desired result

(2.5).
�

Corollary 2.4. In the case x = 1 in Theorem 2.3, we have

g(α)
n (1 ; u : p, q) =

n∑
k=0

(
n
k

)
p,q

p(n−k
2 )g

(α)
k (u : p, q). (2.6)

Remark 2.3. The (p, q)-generalization of the following formula:

g(α)
n (1 ; u) =

n∑
k=0

(
n
k

)
g
(α)
k (u). (2.7)

Note that
g(0)
n (x ; u : p, q) = p(n

2)xn .
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Theorem 2.5. The following formula holds true:

g(α)
n ((x + y)p,q ; u : p, q) =

n∑
k=0

(
n
k

)
p,q

yn−kp(n−k
2 )g

(α)
k (x ; u : p, q). (2.8)

g(α+β)
n (x ; u : p, q) =

n∑
k=0

(
n
k

)
p,q

g
(α)
k (x ; u : p, q)g

(β)
n−k (u : p, q). (2.9)

∂

∂p,qx
g(α)
n (x ; u : p, q) = [n]p,qg

(α)
n−1 (px ; u : p, q). (2.10)

Proof. Using definition 2.1 and differentiating generating function (2.1) with
respect to x with the help of equation (1.2) and then simplifying with the help
of the Cauchy product, formulas (2.8)-(2.10) are obtained. �

Theorem 2.6. (Difference equation) For n ≥ 1, we have

(1− u)g
(α−1)
n−1 (u : p, q) = g(α)

n (1 ; u : p, q)− ug(α)
n (u : p, q). (2.11)

Proof. We can easily derive by using the equation (2.1). We omit the proof. �

Theorem 2.7. (Recurrence relationship) g
(α)
n (x ; u : p, q) fulfills the following

equality:

n∑
k=0

(
n
k

)
p,q

p(
n−k

2 )g(α)
n (x ; u : p, q)−ug(α)

n (x ; u : p, q) = (1−u)g(α−1)
n (x ; u : p, q).

(2.12)

Proof. Using generating function (2.1), we get (2.12).
�

Corollary 2.8. For α = 1 in Theorem 2.7, we have

n∑
k=0

(
n
k

)
p,q

p(
n−k

2 )gn(x ; u : p, q)− ugn(x ; u : p, q) = (1 − u)xnp(n
2). (2.13)

3. Main results

In this section, we derive implicit and explicit formulas, integral representa-

tions, some identities for g
(α)
n (x ; u : p, q). Also, we present new theorems and

some (p, q)-extensions of known results in Carlitz [1], Kurt [9], Simsek [16, 17]
and so on. We start with the following explicit formula for (p, q)-Frobenius-
Genocchi polynomials of order α by the following theorem.
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Theorem 3.1. The following implicit summation formula holds true:

g
(α)
k+l(z ; u : p, q)

=

k,l∑
n,m=0

(
l
m

)
p,q

(
k
n

)
p,q

p(
n+m

2 )(z − x)m+ng
(α)
k−n,l−m(x ; u : p, q).

(3.1)

Proof. Replacing t with (t+w) in (2.1) and using result [18, p.52, Eq.2], we get

(
(1− u)(t+ w)

ep,q(t+ w)− u

)α
= ep,q(−x(t+ w))

∞∑
k,l=0

g
(α)
k+l(x;u : p, q)

tk

[k]p,q!

wl

[l]p,q!
. (3.2)

Replacing x by z, and equating the obtained equation with the above equa-
tion, we arrive at

ep,q((z − x)(t+ w))

∞∑
k,l=0

g
(α)
k+l(x ; u : p, q))

tk

[k ]p,q !

w l

[l ]p,q !

=

∞∑
k,l=0

g
(α)
k+l(z ; u : p, q))

tk

[k ]p,q !

w l

[l ]p,q !
.

(3.3)

Expanding the exponent part in the above equation, we have
∞∑
N=0

[(z − x)(t+ w)]Np(
N
2 )

[N ]p,q!

∞∑
k,l=0

g
(α)
k+l(x ; u : p, q))

tk

[k ]p,q !

w l

[l ]p,q !

=

∞∑
k,l=0

g
(α)
k+l(z ; u : p, q))

tk

[k ]p,q !

w l

[l ]p,q !
.

(3.4)

From equation (3.4) we can derive the following equation.

∞∑
n,m=0

(z − x)(n+m)p(
n+m

2 )tnwm

[n]p,q![m]p,q!

∞∑
k,l=0

g
(α)
k+l(x ; u : p, q))

tk

[k ]p,q !

w l

[l ]p,q !

=

∞∑
k,l=0

g
(α)
k+l(z ; u : p, q))

tk

[k ]p,q !

w l

[l ]p,q !
.

(3.5)

Using use of Lemma [18, p.100, Eq.2] and then on comparing the coefficients of
tk and wl, we get the required result. �

Corollary 3.2. For l = 0 in Theorem 3.1, we get

g
(α)
k (z ; u : p, q) =

k∑
n=0

(
k
n

)
p,q

p(n
2)(z − x )ng

(α)
k−n(x ; u : p, q). (3.6)

Theorem 3.3. The following (p, q)-integral is valid∫ b

a

g(α)
n (x ; u : p, q)dp,qx =

g
(α)
n+1 ( b

p ; u : p, q)− g
(α)
n+1 (a

p ; u : p, q)

[n + 1 ]p,q
. (3.7)
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Proof. Since∫ b

a

∂

∂p,qx
g(α)
n (x ; u : p, q)dp,qx = f (b)− f (a), (see [19])

in terms of equation (2.10) and equations (1.5) and (1.6), we arrive at the as-
serted result

∫ b

a

∂

∂p,qx
g(α)
n (x ; u : p, q)dp,qx =

1

[n+ 1]p,q

∫ b

a

g(α)
n (

x

p
; u : p, q)dp,qx

=
g
(α)
n+1 ( b

p ; u : p, q)− g
(α)
n+1 (a

p ; u : p, q)

[n+ 1]p,q
.

This completes the proof of this theorem. �

Theorem 3.4. The following result holds true:

(2u− 1)

n∑
k=0

(
n
k

)
p,q

gk (u : p, q)gn−k (x ; 1 − u : p, q)

= ugn(x ; u : p, q)− (1 − u)gn(x ; 1 − u : p, q).

(3.8)

Proof. By utilizing the same method of Duran et al. [5] and Kurt [9], we first
consider the identity

2u− 1

(ep,q(t)− u)(ep,q(t)− (1− u))
=

1

ep,q(t)− u
− 1

ep,q(t)− (1− u)
,

then we have

(2u− 1)
(1− u)ep,q(xt)(1− (1− u)t)

(ep,q(t)− u)(ep,q(t)− (1− u))

= u
(1− u)tep,q(xt)

ep,q(t)− u
− (1− u)tep,q(xt)(1− (1− u)t)

ep,q(t)− (1− u)
.

Using generating function, we can represent

(2u− 1)

∞∑
k=0

gk (u : p, q)
tk

[k ]p,q !

∞∑
n=0

gn(x ; 1 − u : p, q)
tn

[n]p,q !

= u

∞∑
n=0

gn(x ; u : p, q)
tn

[n]p,q !
− (1 − u)

∞∑
n=0

gn(x ; 1 − u : p, q)
tn

[n]p,q !
.

On comparing the coefficient of tn, we arrive at the required result (3.8). �

Theorem 3.5. Each of the following relationships holds true:

g(α)
n (x ; u : p, q)

=

n+1∑
s=0

(
n+ 1
s

)
p,q

[
s∑

k=0

(
s
k

)
p,q

Bs−k (x ; p, q)p(k
2) − Bs(x ; p, q)

]
g
(α)
n+1−s(u : p, q)

[n+ 1]p,q
,

(3.9)



On higher order (p, q)-Frobenius-Genocchi numbers and polynomials 303

where Bn(x; p, q) is (p, q)-Bernoulli polynomials.

Proof. By using definition (2.1), we have(
(1− u)t

ep,q(t)− u

)α
ep,q(xt)

=

(
(1− u)t

ep,q(t)− u

)α
t

ep,q(t)− u
ep,q(t)− u

t
ep,q(xt)

=
1

t

∞∑
n=0

(
n∑
k=0

(
n
k

)
p,q

Bn−k (x ; p, q)p(k
2)

)
tn

[n]p,q!

∞∑
n=0

g(α)
n (u : p, q)

tn

[n]p,q !

− 1

t

∞∑
n=0

Bn(x ; p, q)
tn

[n]p,q !

∞∑
n=0

g(α)
n (u : p, q)

tn

[n]p,q !

=
1

t

∞∑
n=0

[
n∑
s=0

(
n
s

)
p,q

s∑
k=0

(
s
k

)
p,q

Bs−k (x ; p, q)p(k
2)

]
g
(α)
n−s(u : p, q)

tn

[n]p,q !

− 1

t

∞∑
n=0

[
n∑
s=0

(
n
s

)
p,q

Bs(x ; p, q)

]
g
(α)
n−s(u : p, q)

tn

[n]p,q !
.

By using Cauchy product and comparing the coefficients of tn

[n]p,q !
, we arrive at

the required result (3.9). �

Theorem 3.6. Each of the following relationships holds true:

g(α)
n (x ; u : p, q)

=

n∑
s=0

(
n
s

)
p,q

[
s∑

k=0

(
s
k

)
p,q

Es−k (x ; p, q)p(k
2) + Es(x ; p, q)

]
g
(α)
n−s(u : p, q)

[2]p,q
,

(3.10)
where En(x; p, q) is (p, q)-Euler polynomials.

Proof. By using definition (2.1), we have(
(1− u)t

ep,q(t)− u

)α
ep,q(xt) =

(
(1− u)t

ep,q(t)− u

)α
[2]p,q

ep,q(t) + 1

ep,q(t) + 1

[2]p,q
ep,q(xt)

=
1

[2]p,q

[ ∞∑
n=0

(
n∑
k=0

(
n
k

)
p,q

En−k (x ; p, q)p(k
2)

)
tn

[n]p,q!
+

∞∑
n=0

En(x; p, q)
tn

[n]p,q!

]

×
∞∑
n=0

g(α)
n (u : p, q)

tn

[n]p,q !

=
1

[2]p,q

∞∑
n=0

[
n∑
s=0

(
n
s

)
p,q

s∑
k=0

(
s
k

)
p,q

Es−k (x ; p, q)p(k
2) +

n∑
s=0

(
n
s

)
p,q

Es(x ; p, q)

]

× g
(α)
n−s(u : p, q)

tn

[n]p,q !
.
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Comparing the coefficients of tn

[n]p,q !
, we arrive at the desired result (3.10). �

Theorem 3.7. Each of the following relationships holds true:

g(α)
n (x ; u : p, q)

=

n∑
s=0

(
n+ 1
s

)
p,q

[
s∑

k=0

(
s
k

)
p,q

Gs−k (x ; p, q)p(k
2) + Gs(x ; p, q)

]
g
(α)
n−s(u : p, q)

[2]p,q[n+ 1]p,q
,

(3.11)
where Gn(x; p, q) is (p, q)-Genocchi polynomials.

Proof. By using definition (2.1), we have(
(1− u)t

ep,q(t)− u

)α
ep,q(xt) =

(
(1− u)t

ep,q(t)− u

)α
[2]p,qt

ep,q(t) + 1

ep,q(t) + 1

[2]p,qt
ep,q(xt)

=
1

[2]p,qt

[ ∞∑
n=0

(
n∑
k=0

(
n
k

)
p,q

Gn−k (x ; p, q)p(k
2)

)
tn

[n]p,q!
+

∞∑
n=0

Gn(x ; p, q)
tn

[n]p,q !

]

×
∞∑
n=0

g(α)
n (u : p, q)

tn

[n]p,q !

=
1

[2]p,q

∞∑
n=0

[
n∑
s=0

(
n
s

)
p,q

s∑
k=0

(
s
k

)
p,q

Gs−k (x ; p, q)p(n
2) +

n∑
s=0

(
n
s

)
p,q

Gs(x ; p, q)

]

× g
(α)
n+1−s(u : p, q)

tn

[n + 1 ]p,q !
.

Comparing the coefficients of tn

[n]p,q !
, then we have the asserted result (3.11). �
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