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ON THE MAXIMUM AND MINIMUM MODULUS OF

POLYNOMIALS ON CIRCLES

Han Kyol Chong and Seon-Hong Kim

Abstract. In this paper, we consider both maximum modulus and min-

imum modulus on a circle of some polynomials. These give rise to in-
teresting examples that are about moduli of Chebyshev polynomials and

certain sums of polynomials on a circle. Moreover, we obtain some root
locations of difference quotients of Chebyshev polynomials.

1. Introduction

A classic question regarding polynomials is where the maximum modulus
of such a polynomial on a circle occurs. Many papers ([2], [5], [7]) and books
(e.g. Chapter 12 of [6]) have been written about this question and more. For
example, given a complex polynomial p(z), the maximum of |p(z)| on the unit
disc D = {z : |z| ≤ 1}, denoted by ‖p‖∞, is a quantity which arises in many
interesting results in mathematics. By the maximum modulus principle, ‖p‖∞
is attained at a boundary point of D. In this paper, we start to consider
both maximum modulus and minimum modulus of some polynomials on a
circle. These will give rise to interesting examples that are about moduli of
Chebyshev polynomials and certain sums of polynomials on a circle. In [4],
Kim and Lee obtained a result about root locations of difference quotients of
Chebyshev polynomials of the first kind. From our example in this paper, we
will obtain root locations of difference quotients of Chebyshev polynomials of
the second kind as well as of the first kind.

2. Moduli of polynomials

We first prove the following.

Theorem 1. For a positive integer n, let

p(z) =

n∏
k=1

(z − αk)
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be a polynomial of degree n with real coefficients with

αk = −αn+1−k > 0 (1 ≤ k ≤ bn/2c)

and αn+1
2

= 0 when n is odd. Then for a > 0,

min
|z|=a

|p(z)| = |p(a)|(= |p(−a)|)

and

max
|z|=a

|p(z)| = |p(i a)|(= |p(−i a)|).

Proof. For 0 ≤ θ < 2π, we define a function f(θ) by

f(θ) = |p(aeiθ)|2 =

n∏
k=1

|(a cos θ + ia sin θ)− αk|2

=

n∏
k=1

[
(a cos θ − αk)

2
+ a2 sin2 θ

]
=

n∏
k=1

[
a2 − 2aαk cos θ + α2

k

]
.

Then

(1) f ′(θ) =

n∑
k=1

[
2aαk sin θ

f(θ)

a2 − 2aαk cos θ + α2
k

]
.

Since αk = −αn+1−k for 1 ≤ k ≤ bn/2c, we may rewrite f ′(θ) as

f ′(θ) =

bn/2c∑
k=1

[
2aαk sin θ · f(θ)

a2 − 2aαk cos θ + α2
k

− 2aαk sin θ · f(θ)

a2 + 2aαk cos θ + α2
k

]
,

where, for n odd, the mid summand is equal to zero since αn+1
2

= 0. We now

assume that n is even. Then

f ′(θ) =

n/2∑
k=1

2aαk sin θ f(θ)

[
1

a2 − 2aαk cos θ + α2
k

− 1

a2 + 2aαk cos θ + α2
k

]

=

n/2∑
k=1

2aαk sin θ f(θ)
4aαk cos θ

a4 − 2a2α2
k cos 2θ + α4

k

=

n/2∑
k=1

4a2αk sin 2θ f(θ)
αk

a4 − 2a2α2
k cos 2θ + α4

k

.

But

a4 − 2a2α2
k cos 2θ + α4

k > a4 − 2a2α2
k + α4

k =
(
a2 − α2

k

)2
> 0.

Since αk > 0 for 1 ≤ k ≤ n/2 and f(θ) > 0, all summands of the sum of f ′(θ)
have the same sign. This implies that the sign of f ′(θ) depends only on the
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sign of sin 2θ. Hence

f ′(θ)

{
> 0 if θ ∈

(
0, π2

)
∪
(
π, 3π2

)
,

< 0 if θ ∈
(
π
2 , π

)
∪
(
3π
2 , 2π

)
,

and f ′(θ) = 0 only when θ = 0, π/2, π, 3π/2. Letting

Hk(θ) =
f(θ)

a2 − 2aαk cos θ + α2
k

gives

f ′′(θ) =

n∑
k=1

(2aαk cos θ)Hk(θ) +

n∑
k=1

(2aαk sin θ)H ′k(θ)

from (1). We now apply the second derivative test for each critical point to
obtain the results. First,

f ′′(0) =

n∑
k=1

2aαk
∏
j 6=k

(
a2 − 2aαj + α2

j

)
=

n∑
k=1

2aαk
∏
j 6=k

(a− αj)2

= 2a

n∑
k=1

αk
p(a)2

(a− αk)
2

= 2ap(a)2
n/2∑
k=1

[
αk

(a− αk)
2 +

αn+1−k

(a− αn+1−k)
2

]

= 2ap(a)2
n/2∑
k=1

αk

[
1

(a− αk)
2 −

1

(a+ αk)
2

]

= 2ap(a)2
n/2∑
k=1

αk
4aαk

(a2 − α2
k)

2 > 0,

which implies that f(θ) has a local minimum at θ = 0. It follows from cosπ =
−1 and p(x) = p(−x) that

f ′′(π) = −
n∑
k=1

2aαk
∏
j 6=k

(
a2 + 2aαj + α2

j

)
= −

n∑
k=1

2aαk
∏
j 6=k

(a+ αj)
2

= −2a

n∑
k=1

αk
p(a)2

(a+ αk)
2 = −2ap(a)2

n∑
k=1

αk

(a+ αk)
2

= −2ap(a)2
n/2∑
k=1

[
αk

(a+ αk)
2 +

αn+1−k

(a+ αn+1−k)
2

]

= −2ap(a)2
n/2∑
k=1

αk

[
1

(a+ αk)
2 −

1

(a− αk)
2

]
> 0.
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So f(θ) has a local minimum at θ = π. On the other hand,

f ′′
(π

2

)
=

n∑
k=1

2aαkH
′
k

(π
2

)
and f ′′

(
3π

2

)
= −

n∑
k=1

2aαkH
′
k

(
3π

2

)
.

Since

H ′k

(π
2

)
= −

f
(
π
2

)
2aαk

(a2 + α2
k)

2 and H ′k

(
3π

2

)
=
f
(
3π
2

)
2aαk

(a2 + α2
k)

2 ,

we have

f ′′
(π

2

)
= −

n∑
k=1

4a2α2
k

(a2 + α2
k)

2 f
(π

2

)
< 0 and

f ′′
(

3π

2

)
= −

n∑
k=1

4a2α2
k

(a2 + α2
k)

2 f

(
3π

2

)
< 0,

respectively, which imply that f(θ) has a local maximum at θ = π/2, 3π/2.
In all f(θ) has the minimum at θ = 0, π, and the maximum at θ = π/2, 3π/2
since f(0) = f(π) and f(π/2) = f(3π/2). �

From Theorem 1, we obtain the following.

Theorem 2. With the notations used in Theorem 1, if a > max1≤k≤bn/2c αk,
then the roots of p(z) = p(a) lie inside |z| ≤ a.

Proof. If max1≤k≤bn/2c αk < a < b, then for each k,

0 < a− αk < b− αk
and

(2) |p(a)| =
n∏
k=1

|a− αk| <
n∏
k=1

|b− αk| = |p(b)| .

If z is a complex number with |z| = b, then by (2) and Theorem 1, we have

|p(a)| < |p(b)| ≤ |p(z)| .

This follows the result. �

3. Examples

In this section, we provide some interesting examples of Theorems 1 and 2.

Example 3. Chebyshev polynomials are of great importance in many areas
of mathematics, particularly approximation theory. Let Tn(z) and Un(z) be
the Chebyshev polynomials of first kind and of the second kind, respectively.
These polynomials satisfy the recurrence relations

T0(z) = 1, T1(z) = z, Tn+1(z) = 2zTn(z)− Tn−1(z) (n ≥ 1),

U0(z) = 1, U1(z) = 2z, Un+1(z) = 2zUn(z)− Un−1(z) (n ≥ 1).
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The roots of Tn(z) and Un(z) are

cos
(2k − 1)π

2n
and cos

kπ

n+ 1
,

respectively, where 1 ≤ k ≤ n. Letting

αk = cos
(2k − 1)π

2n
or cos

kπ

n+ 1

gives
0 < αk = −αn+1−k < 1 (1 ≤ k ≤ bn/2c)

and αn+1
2

= 0 when n is odd. Thus by Theorem 1, for a > 0

min
|z|=a

|Tn(z)| = |Tn(a)|(= |Tn(−a)|), max
|z|=a

|Tn(z)| = |Tn(i a)|(= |Tn(−i a)|),

and

min
|z|=a

|Un(z)| = |Un(a)|(= |Un(−a)|), max
|z|=a

|Un(z)| = |Un(i a)|(= |Un(−i a)|).

Moreover, by Theorem 2, if a > 1, then all roots of

QTn(a, z) :=
Tn(z)− Tn(a)

z − a
and QUn(a, z) :=

Un(z)− Un(a)

z − a
,

where z 6= a, lie inside |z| ≤ a. In fact, it was shown in [4] that the roots of
QTn(a, z) lie on the ellipse

x2

a2
+

y2

a2 − 1
= 1 (z = x+ iy)

that is inside |z| ≤ a. But there have not been known a specific location of
roots of QUn(a, z). The sufficient condition a > max1≤k≤bn/2c αk in Theorem
2 seems to be required from many examples. Two of them are QT10(0.9, z)
and QU10(0.9, z) having roots ±0.984 . . . and ±0.932 . . ., respectively, whose
absolute values are greater than 0.9.

Perhaps the most immediate question of sums of polynomials, A+B = C, is
“given bounds for the roots of A and B, what bounds can be given for the roots
of C?” By Fell [1], if all roots of A and B lie in [−1, 1] with A, B monic and
deg A = deg B = n, then no root of C can have modulus exceeding cot (π/2n),
the largest root of (z + 1)n + (z − 1)n. This suggests to study polynomials
having a form something like A(z) +B(z) where all roots of A(z) are negative
and all roots of B(z) are positive.

Example 4. We consider the polynomial

qn(z) :=

n∏
j=1

(z − rj) +

n∏
j=1

(z + rj),(3)

where 0 < r1 ≤ r2 ≤ · · · ≤ rn. It is known by Kim [3] that all (conjugate) roots
of the polynomial qn(z) with real coefficients lie on the imaginary axis, and no
two of the roots of qn(z) can be equal and the gaps between the roots of qn(z) in
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the upper half-plane strictly increase as one proceeds upward. The polynomial
qn(z) has purely imaginary roots symmetric with the other about the real axis,
i.e., if iαk, where αk > 0, is a root, so is −iαk, and letting iαn+1−k = −iαk
deduces αk = −αn+1−k which is a sufficient condition of Theorem 1. So we
may apply Theorem 1 to the polynomial qn(z) so that for a > 0,

max
|z|=a

|q(z)| = |q(a)|(= |q(−a)|)

and
min
|z|=a

|q(z)| = |q(i a)|(= |q(−i a)|).
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