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Abstract. In this paper, we investigate the uniqueness of linear difference
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1. Introduction

In this article, we assume that the reader is familiar with basic notations of
Nevanlinna value distribution theory like T (r, f) ,m (r.f) , N (r, f) , E (r, f) , ...
(see [7],[16],[14]). A meromorphic function f means meromorphic in the complex
plane C. Let k be a positive integer or infinity and a ∈ C∪{∞}. Set E = (a, f) =
{z : f(z)− a = 0}, where zero point with multiplicity k is counted k times in the
set. If these zeros are counted only once, then we denote the set by E (a, f).

Let f and g be two nonconstant meromorphic functions. If E(a, f) = E(a, g),
then we say that f and g share the value a CM; if E(a, f) = E(a, g), then we say
that f and g share the value a IM. We denote by Ek)(a, f) the set of all a-points
of f with multiplicities not exceeding k, where an a-point is counted according
to its multiplicity. Also we denote by Ek)(a, f) the set of distinct a-points of f

with multiplicities not greater than k. We denote by Nk)

(
r, 1

f−a

)
the counting

function for zeros of f−a with multiplicity not more than k, and by Nk)

(
r, 1

f−a

)
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the corresponding one for which multiplicity is not counted.
Let N(k

(
r, 1

f−a

)
be the counting function for zeros of f − a with multiplicity at

least k and N (k

(
r, 1

f−a

)
be the corresponding one for which multiplicity is not

counted.We set

Nk

(
r,

1

f − a

)
= N

(
r,

1

f − a

)
+N (2

(
r,

1

f − a

)
+ ...+N (k

(
r,

1

f − a

)
.

Let NE (r, a; f, g) (NE(r, a; f, g)) be the counting function (reduced counting
function) of all common zeros of f − a and g − a ignoring multiplicities. If

N

(
r,

1

f − a

)
+N

(
r,

1

g − a

)
− 2NE (r, a; f, g) = S (r, f) + S (r, g) ,

then we say that f and g share a ”CM”. On the other hand, if

N

(
r,

1

f − a

)
+N

(
r,

1

g − a

)
− 2N0 (r, a; f, g) = S (r, f) + S (r, g) ,

then we say that f and g share a ”IM”. Throughout the paper, we denote by
ρ(f) the order of f (see [5],[14],[19]).

We define shift and difference operators of f(z) by f(z + c) and △cf(z) =
f(z + c)− f(z), respectively. Note that △n

c f(z) = △n−1
c (△cf(z)), where c is a

nonzero complex number and n ≥ 2 is a positive integer.

For further generalization of △cf, now we define the difference operator of an
entire(meromorphic) function f as Lc (f) = f(z + c) + c0f(z), where c0 is a
non-zero complex constant. Clearly, for the particular choice of the constant
c0 = −1, we get Lc (f) = △cf(z).

In 1967, W.K. Hayman[6] and Clunie[3] proposed the following result.

Theorem 1.1. [6, 3] Let f be a transcendental entire function, n ≥ 1 a positive
integer. Then fnf ′ = 1 has infinitely many solutions.

In 1997, corresponding to the famous conjecture of Hayman[6], Yang and
Ua[16] studied the unicity of differential monomials and obtained the following
theorem.

Theorem 1.2. [16] Let f and g be two nonconstant entire functions, n ≥ 6 a
positive integer. If fnf ′ and gng′ share 1 CM, then either f(z) = c1e

cz, g(z) =

c2e
−cz, where c1, c2c are three constants satisfying (c1c2)

n+1
c2 = −1, or f(z) ≡

tg(z) for a constant t such that tn+1 = 1.

In 2001, Fang and Hong [4] studied the unicity of differential polynomials of
the form fn (f − 1) f ′ and proved the following uniqueness theorem.

Theorem 1.3. [4] Let f and g be two transcendental entire functions, n ≥ 11
an integer. If fn (f − 1) f ′ and gn (g − 1) g′ share the value 1 CM, then f ≡ g.
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In 2004, Lin and Yi [12] extended the above theorem as to the fixed point.
They proved the following result.

Theorem 1.4. [12] Let f and g be two transcendental entire functions, n ≥ 7
an integer. If fn (f − 1) f ′ and gn (g − 1) g′ share the value z CM, then f ≡ g.

In 2010, Zhang [19] got an analogue result for translates.

Theorem 1.5. [19] Let f and g be two transcendental entire functions of finite
order, and α(z) be small function with respect to both f(z) and g(z). Suppose that
c is an non-zero complex constant and n ≥ 7 is an integer. If fn (f − 1) f(z+ c)
and gn (g − 1) g(z + c) share the value α(z) CM, then f ≡ g.

C. Meng [14] demonstrated the subsequent findings in the same study in 2014.

Theorem 1.6. [14] Let f and g be two transcendental entire functions of finite
order, and α(z) be small function with respect to both f(z) and g(z). Suppose that
c is an non-zero complex constant and n ≥ 7 is an integer. If fn (f − 1) f(z+ c)
and gn (g − 1) g(z + c) share the value (α(z), 2), then f ≡ g.

Theorem 1.7. [14] Let f and g be two transcendental entire functions of finite
order, and α(z) be small function with respect to both f(z) and g(z). Suppose that
c is an non-zero complex constant and n ≥ 10 is an integer. If fn (f − 1) f(z+c)
and gn (g − 1) g(z + c) share (α(z), 2)∗, then f ≡ g.

Theorem 1.8. [14] Let f and g be two transcendental entire functions of finite
order, and α(z) be small function with respect to both f(z) and g(z). Sup-
pose that c is an non-zero complex constant and n ≥ 16 is an integer. If
E2) (α(z), f

n(f − 1)f(z + c)) = E2) (α(z), g
n(g − 1)f(g + c)), then f ≡ g.

Motivation: In this paper, we consider Theorems 1.6, 1.7 and 1.8 moti-
vate us to think that, for difference implies that if fn(z)f(z + c) is replaced

by (fn (αfm + β)
s Lc (f))

(k)
in Theorems 1.6, 1.7 and 1.8 herein, where α, β

are complex constants with |α + β| ̸= 0 and c is a non-zero complex constant,
n ≥ 1, k ≥ 0, s ≥ 1,m ≥ 1 are positive integers . In this way, we prove the
results which improve and extend Theorems 1.6, 1.7 and 1.8.

2. Main results

Theorem 2.1. Let f and g be two transcendental entire functions of finite
order, and α(z)( ̸= 0,∞) be a small function with respect to both f(z) and g(z).
Suppose c be a non-zero complex constant, n, k(≥ 0), s,m(≥ k + 1) are positive
integers and α, β are two complex constants with |α| + |β| ≠ 0, such that n ≥
2k + ms + 6 when ms ≤ k + 1 and n ≥ 4k − ms + 10 when ms > k + 1. If

(fn (αfm + β)
s Lc (f))

(k)
and (gn (αgm + β)

s Lc (g))
(k)

share ” (α(z), 2) ” and
f(z), f(z+c) share 0 CM, then either f ≡ g or f(z) and g(z) satisfy the algebraic
equation R(f, g) = 0, where R(f, g) is given by

R(w1, w2) = wn
1 (w1 − 1)mw1(z + η)− wn

2 (w2 − 1)mw2(z + η) (1)
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Theorem 2.2. Let f and g be two transcendental entire functions of finite
order, and α(z)(̸= 0,∞) be a small function with respect to both f(z) and g(z).
Suppose c be a non-zero complex constant, n, k(≥ 0), s,m(≥ k + 1) are positive
integers and α, β are two complex constants with |α| + |β| ≠ 0, such that n ≥
3k + 2ms + 8 when ms ≤ k + 1 and n ≥ 6k − ms + 13 when ms > k + 1. If

(fn (αfm + β)
s Lc (f))

(k)
and (gn (αgm + β)

s Lc (g))
(k)

share ” (α(z), 2)
∗
” and

f(z), f(z+c) share 0 CM, then either f ≡ g or f(z) and g(z) satisfy the algebraic
equation R(f, g) = 0, where R(f, g) is given in (1). Then conclusion of Theorem
2.1 holds.

Theorem 2.3. Let f and g be two transcendental entire functions of finite
order, and α(z) be small function with respect to both f(z) and g(z). Suppose
that c is an non-zero complex constant, n ≥ 1, k ≥ 0, s ≥ 1,m ≥ 1 are positive
integers and α, β are two complex constants with |α| + |β| ̸= 0, satisfying n ≥
5k + 4ms + 1 when ms ≤ k + 1 and n ≥ 10k − ms + 19 when ms > k + 1. If

E2)

(
α(z), (fn (αfm + β)

s Lc (f))
(k)

)
= E2)

(
α(z), (gn (αgm + β)

s Lc (g))
(k)

)
,

then f ≡ g. Then conclusion of Theorem 2.1 holds.

Remark 2.1. Clearly, for the c0 = 0, Lc(f) becomes f(z + c), and therefore
Theorem 2.1 coincides with Theorem 1.6 and Theorem 2.2 with Theorem 1.7.

Remark 2.2. The value is decreased in Theorem 1.7, if one replaces

E2) (α(z), f(z)) = E2) (α(z), g(z))

for any two meromorphic functions f and g. We have proven the Theorem 2.3
by noting the lower bound of n exists.

Since for particular case c0 = −1, Lc(f) = △c(f), we observe the following
corollaries.

Corollary 2.4. Let f and g be two transcendental entire functions of finite
order, and α(z)( ̸= 0,∞) be a small function with respect to both f(z) and g(z).
Suppose c be a non-zero complex constant, n, k(≥ 0), s,m(≥ k + 1) are positive
integers and α, β are two complex constants with |α| + |β| ≠ 0, such that n ≥
2k + ms + 6 when ms ≤ k + 1 and n ≥ 4k − ms + 10 when ms > k + 1.

If (fn (αfm + β)
s △c (f))

(k)
and (gn (αgm + β)

s △c (g))
(k)

, share ” (α(z), 2) ”,
then conclusion of theorem 2.1, holds.

Corollary 2.5. Let f and g be two transcendental entire functions of finite
order, and α(z)( ̸= 0,∞) be a small function with respect to both f(z) and g(z).
Suppose c be a non-zero complex constant, n, k(≥ 0), s,m(≥ k + 1) are positive
integers and α, β are two complex constants with |α| + |β| ≠ 0, such that n ≥
3k + 2ms + 8 when ms ≤ k + 1 and n ≥ 6k − ms + 13 when ms > k + 1.

If (fn (αfm + β)
s △c (f))

(k)
and (gn (αgm + β)

s △c (g))
(k)

, share ” (α(z), 2)
∗
”,

then conclusion of Theorem 2.1, holds.
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Corollary 2.6. Let f and g be two transcendental entire functions of finite
order, and α(z) be small function with respect to both f(z) and g(z). Suppose
that c is an non-zero complex constant, n ≥ 1, k ≥ 0, s ≥ 1,m ≥ 1 are positive
integers and α, β are two complex constants with |α| + |β| ̸= 0, satisfying n ≥
5k + 4ms + 1 when ms ≤ k + 1 and n ≥ 10k − ms + 19 when ms > k + 1. If

E2)

(
α(z), (fn (αfm + β)

s △c (f))
(k)

)
= E2)

(
α(z), (gn (αgm + β)

s △c (g))
(k)

)
,

then the conclusion of Theorem 2.1 holds.

Example 2.7. Let f(z) = ez and g(z) = tez where tn+m+1 = 1, k = 0, c0 =

0, α = 1, β = −1, s = 1. Then it is easy to verify that (fn (αfm + β)
s Lc (f))

(k)

and (gn (αgm + β)
s Lc (g))

(k)
share α(z) CM. Here f and g satisfy the conclusion

of Theorem 2.1.

Example 2.8. Let f(z) = sinz and g(z) = cosz, k = 0, c0 = −1, c = 2π, α =
1, β = −1, s = 1,m = n = 1. Then one can easily verify that

(fn (αfm + β)
s Lc (f))

(k)
and (gn (αgm + β)

s Lc (g))
(k)

share α(z). Here
R(f, g) = 0, then f and g satisfy the algebraic equations of the conclusion of
Theorem 2.1.

3. Auxiliary Definitions

Definition 3.1. [11] Let f and g share the value a ”IM” and k be a positive

integer or infinity. Then N
E

k)(r, a; f, g) denotes the reduced counting function of
those a points of f whose multiplicities are equal to the corresponding a points

of g, and both of their multiplicities are not less than k, N
0

(k(r, a; f, g) denotes
the reduced counting function those a-points of f which are a points of g, and
both of their multiplicities are not less than k.

Definition 3.2. [11] Let a ∈ C∪ {∞} and k be a positive integer or infinity. If

N(r, a; f | ≤ k)−N
E

k)(r, a; f, g) = S(r, f),

N(r, a; g| ≤ k)−N
E

k)(r, a; f, g) = S(r, g),

N(r, a; f | ≥ k + 1)−N
0

(k+1(r, a; f, g) = S(r, f),

N(r, a; g| ≥ k + 1)−N
0

(k+1(r, a; f, g) = S(r, g), if k = 0

N

(
r,

1

f − a

)
−N0(r, a; f, g) = S(r, f),

N

(
r,

1

g − a

)
−N0(r, a; f, g) = S(r, g),

then we say that f and g share the value a weakly with weight k and we write
f and g share ”(a, k)”.

Definition 3.3. [1] Let k be a positive integer and for a ∈ C−{0}, Ek) (a; f) =
Ek) (a; g). Let z0 be a zero of f(z) − a of multiplicity p and a zero of g(z) − a
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of multiplicity q. We denote by NL (r, a; f)
(
NL (r, a; g)

)
the reduced counting

function of those a− points of f and g for which p > q ≥ k+1 (q > p ≥ k + 1), by

N
(k+1

E (r, a; f) the reducing counting function of those a− points of f and g for
which p = q ≥ k + 1, by Nf≥k+1 (r, a; f |g ̸= a) the reduced counting functions
of those a− points of f and g for which p≥ k + 1 and q = 0.

Definition 3.4. [1] Let k be a positive integer and for a ∈ C−{0}, let f and g
share a ”IM”. Let z0 be a zero of f(z)−a of multiplicity p and a zero of g(z)−a
of multiplicity q. We denote by Nf≥k+1 (r, a; f |g = m) the reduced counting
functions of those a− points of f and g for which p≥ k + 1 and q = m. We

can define NL (r, a; f)
(
NL (r, a; g)

)
and N

(k+1

E (r, a; f) in a similar manner as
defined in the previous definition.

The term ”relaxed weighted sharing”, which is weaker than ”weakly weighted
sharing” was introduced by A. Banerjee et.al [1] scaling between IM and CM.

Definition 3.5. [1] We denote by N(r, a; f | = p; g| = q) the reduced counting
function of common a-points of f and g with multiplicities p and q respectively.

Definition 3.6. [1] Let f, g share a IM. Also let k be a positive integer or ∞
and a ∈ C ∪ {∞} . If

∑
p,q≤k

N (r, a; f | = p; g| = q) = S (r) , the we say f and g

share a with weight k in a relaxed manner. Here we write f and g share (a, k)
∗

to mean that f and g share a with weight k relaxed manner.

4. Preliminary Lemmas

We state some lemmas which will be needed in the sequel. We denote H the
following

H =

(
F ′′

F ′ − 2F ′

F − 1

)
−
(
G′′

G′ − 2G′

G− 1

)
,

where F and G are non-constant meromorphic functions defined in the complex
plane C.
Lemma 4.1 ([1]). Let H be defined as above. If F and G share ”(1, 2)” and
H ̸= 0, then

T (r, F ) ≤ N2

(
r,

1

F

)
+N2

(
r, F

)
+N2

(
r,

1

G

)
+N2

(
r,G

)
+

1

2
N

(
r,

1

F

)
−

∞∑
p=3

N (p

(
r,

G

G′

)
+ S(r, F ) + S(r,G),

the same inequality holds for T (r,G).

Lemma 4.2 ([1]). Let H be defined as above. If F and G share (1, 2)∗ and
H ̸≡ 0, then

T (r, F ) ≤ N2

(
r,

1

F

)
+N2

(
r, F

)
+N2

(
r,

1

G

)
+N2(r,G) +N

(
r,

1

F

)
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+N
(
r, F

)
−m

(
r,

1

G− 1

)
+ S(r, F ) + S(r,G),

the same inequality holds for T (r,G).

Lemma 4.3 ([18]). Let H be defined as above. If H ≡ 0 and

lim sup
r→∞

N

(
r,

1

F

)
+N

(
r, F

)
+N

(
r,

1

G

)
+N

(
r,G

)
T (r)

< 1, r ∈ I,

where T (r) = max {T (r, F ), T (r,G)} and I is a set with infinite linear measure,
then F ≡ G or FG ≡ 1.

Lemma 4.4 ([2]). Let f(z) be a meromorphic function in the complex plane
of finite order σ(f), and η be a fixed nonzero complex number. Then for each
ϵ > 0, one has

T
(
r, f(z + η)

)
= T

(
r, f(z)

)
+O

(
rσ−1+ϵ

)
+O

(
logr

)
Lemma 4.5 ([15]). Let f(z) be an entire function of finite order σ(f), c a fixed
non zero complex number, and P (z) = anf

n(z)+an−1f
n−1)(z)+ ...+a1f(z)+a0

where aj(j = 0, 1, ..., n) are constants. If F (z) = fn (αfm + β)
s Lcf(z), and

f(z), f(z + c) share 0 CM. Then

T (r, F ) = (n+ms+ 1)T
(
r, f

)
+O

(
rσ(f)−1+ϵ

)
+O(logr)

and the same inequality is true for T (r,G).

Lemma 4.6 ([20]). Let f be nonconstant meromorphic function and p, k be
integers. Then

Np

(
r, 0; f (k)

)
≤ T

(
r, f (k)

)
− T

(
r, f

)
+Np+k

(
r, 0; f

)
+ S

(
r, f

)
,

Np

(
r, 0; f (k)

)
≤ kN

(
r,∞; f

)
+Np+k

(
r, 0; f

)
+ S

(
r, f

)
Lemma 4.7 ([13]). Let F and G be two nonconstant entire functions, and p ≥ 2
an integer. If Ep) (1, F ) = Ep) (1, G) and H ̸= 0, then

T (r, F )

≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+ 2N

(
r,

1

F

)
+N

(
r,

1

G

)
+ S (r, F ) + S (r,G)

Lemma 4.8. Let f and g be an entire functions n(≥ 1),m(≥ 1), s(≥ 1), k(≥ 0)
be integers, and α, β are two constants with |α|+ |β| ≠ 0,

let F = (fn (αfm + β)
s Lc (f))

(k)
and (gn (αgm + β)

s Lc (g))
(k)

. If there exists
nonzero constants c1, c2 such that N

(
r, c1;F

)
= N

(
r, 0;G

)
and N

(
r, c2;G

)
=

N
(
r, 0;F

)
, then n ≤ 2k +ms+ 3 when ms > k + 1 and n ≤ 4k −ms+ 5 when

ms > k + 1.
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Proof. We put F = (fn (αfm + β)
s Lc (f))

(k)
, G = (gn (αgm + β)

s Lc (g))
(k)

.
Then from Lemma 4.5, we have

T (r, F1) = (n+ms+ 1)T (r, f) +O
{
rρ(f)−1+ϵ

}
+ S (r, f)

(2)

T (r,G1) = (n+ms+ 1)T (r, g) +O
{
rρ(g)−1+ϵ

}
+ S (r, g)

(3)

Now by the hypothesis and the second fundamental theorem of Nevanlinna, we
have

T (r, F ) ≤ N (r, 0, F ) +N (r, C, F ) + S (r, F ) (4)

T (r,G) ≤ N (r, 0, G) +N (r, C,G) + S (r,G) (5)

using (2),(3),(4),((5)), we obtain

(n+ms+ 1)T (r, f) ≤ T (r, F )−N (r, 0 : F ) +Nk+1 (r, 0 : F1) + S (r, f)

≤ N (r, 0 : G) +Nk+1 (r, 0 : F1) + S (r, f)

(n+ms+ 1)T (r, f) ≤ Nk+1 (r, 0 : G1) +Nk+1 (r, 0 : F1) + S (r, f) + S (r, g)

≤ (k +ms+ 1)T (r, f) + S (r, f) + S (r, g)
(6)

Similarly

(n+ms+ 1)T (r, g) ≤ (k +ms+ 1)T (r, g) + S (r, f) + S (r, g)
(7)

Case 1: When ms ≤ k + 1, using (6), (7) and Lemma 4.5 we see that,

(n+ms+ 1)T (r, f) ≤ (k +ms+ 2) [T (r, f) + T (r, g)] +O
{
rρ(f)−1+ϵ

}
+

O
{
rρ(g)−1+ϵ

}
+ S (r, f) + S (r, g)

(8)

Similarly

(n+ms+ 1)T (r, g) ≤ (k +ms+ 2) [T (r, g) + T (r, f)] +O
{
rρ(g)−1+ϵ

}
+

O
{
rρ(f)−1+ϵ

}
+ S (r, g) + S (r, f) (9)

From (8), (9) we obtain,

(n− 2k −ms− 3) [T (r, f) + T (r, g)] ≤ S (r, f) + S (r, g)
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which gives n ≤ 2k +ms+ 3 when ms ≤ k + 1.

Case 2: When ms > k + 1, by using (6) and lemma 4.5 we obtain,

(n+ms+ 1)T (r, f) ≤ (k +ms+ 2) [T (r, f) + T (r, g)]

+O
{
rρ(f)−1+ϵ

}
+O

{
rρ(g)−1+ϵ

}
+ S (r, f) + S (r, g)

(n+ms+ 1)T (r, f) ≤ (2k + 3) [T (r, f) + T (r, g)] +O
{
rρ(f)−1+ϵ

}
+O

{
rρ(g)−1+ϵ

}
+ S (r, f) + S (r, g)

(10)

Similarly,

(n+ms+ 1)T (r, g) ≤ (2k + 3) [T (r, g) + T (r, f)] +O
{
rρ(g)−1+ϵ

}
+

O
{
rρ(f)−1+ϵ

}
+ S (r, g) + S (r, f) (11)

From (10), (11), we obtain

(n+ms+ 1) [T (r, f) + T (r, g)] ≤ (4k + 6) [T (r, f) + T (r, g)] + S (r, f) + S (r, g)

(n+ms− 4k − 5) [T (r, f) + T (r, g)] ≤ S (r, f) + S (r, g) ,

which gives n ≤ 4k −ms+ 5 when ms > k + 1. This proves the lemma. □

Lemma 4.9 ([1]). Let F and G be nonconstant meromrophic functions that
share ”(1, 2)” and H ̸= 0. Then

T (r, F ) ≤N2 (r, 0;F ) +N2 (r, 0;G) +N2 (r,∞;F ) +N2 (r,∞;G)

−
∞∑
3

N

(
r, 0;

G′

G
| ≥ p

)
+ S(r, F ) + S(r,G),

and the same inequality holds for T (r,G).

Lemma 4.10 ([1]). Let F,G be nonconstant meromorphic functions that share
(1, 2)∗ and H ̸= 0. Then

T (r, F ) ≤N2 (r, 0;F ) +N2 (r, 0;G) + N̄ (r, 0;F ) + N̄ (r,∞;G)

−m (r, 1;G) + S(r, F ) + S(r,G),

5. Proof of the Main Results

Theorem 2.1

Proof. Let F =
F

(k)
1

α(z) and G =
G

(k)
1

α(z) where

F1 = fn(αfm + β)sLc(f), G1 = gn(αgm + β)sLc(g). Then F and G are tran-
scendental meromorphic functions that share ”(1, 2)” except the zeros and poles
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of α(z). Then we have (2) and (3). If possible, we may assume that H ̸= 0.
Using (2), (3) and Lemma 4.3, we obtain

N2 (r, 0;F ) ≤N2

(
r, 0;F

(k)
1

)
+ S(r, f)

≤T
(
r, F

(k)
1

)
− (n+ms+ 1)T (r, f) +Nk+2 (r, 0;F1) + S(r, f)

N2 (r, 0;F ) ≤T (r, α(z))− (n+ms+ 1)T (r, f) +Nk+2 (r, 0;F1) + S(r, f)

From this we get

(n+ms+ 1)T (r, f) ≤ T (r, F )−N2(r, 0;F ) +Nk+2(r, 0;F1) + S(r, f) (12)

Also by (3) we obtain,

N2 (r, 0;F ) ≤N2

(
r, 0; (F1)

(k)
)
+ S(r, f)

≤T
(
r, (F1)

(k)
)
− (n+ms+ 1)T (r, f) +Nk+2 (r, 0;F1) + S(r, f)

≤T (r.F )− (n+ms+ 1)T (r, f) +Nk+2 (r, 0;F1) + S(r, f)

From this we get,

(n+ms+ 1)T (r, f) ≤ T (r, F )−N2(r, 0;F ) +Nk+2(r, 0;F1) + S(r, f) (13)

Similarly,

N2 (r, 0;G) ≤ Nk+2(r, 0;G1) + S(r, g) (14)

Using (14) and Lemma 4.5, we obtain (12)

(n+ms+ 1)T (r, f) ≤N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) +Nk+2(r, 0;F1)

+ S(r, f) + S(r, g)

≤Nk+2(r, 0;F1) +N2(r, 0;G1) + S(r, f) + S(r, g) (15)

We suppose that ms ≤ k + 1. Then from (15) we get,

(n+ms+ 1)T (r, f) ≤ (k +ms+ 2) {T (r, f) + T (r, g)}+ S(r, f) + S(r, g)
(16)

Similarly,

(n+ms+ 1)T (r, g) ≤ (k +ms+ 2) {T (r, g) + T (r, f)}+ S(r, g) + S(r, f) (17)

From (16) and (17) together yield,

(n− 2k −ms− 5) {T (r, f) + T (r, g)} ≤O
{
rρ(f)−1+ϵ

}
+O

{
rρ(g)−1+ϵ

}
+ S(r, f) + S(r, g),

a contradiction with the assumption that n ≤ 2k+ms+6. Next we assume that
ms > k + 1. Then from (15) we obtain,

(n+ms+ 1) {T (r, f)} ≤(2k + 5) {T (r, f) + T (r, g)}
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O
{
rρ(f)−1+ϵ

}
+O

{
rρ(g)−1+ϵ

}
+ S(r, f) + S(r, g)

(18)

In a similar manner we obtain,

(n+ms+ 1) {T (r, g)} ≤(2k + 5) {T (r, g) + T (r, f)}

O
{
rρ(g)−1+ϵ

}
+O

{
rρ(f)−1+ϵ

}
+ S(r, g) + S(r, f)

(19)

By (18) and (19) together give,

(n+ms− 4k − 9) {T (r, f) + T (r, g)} ≤O
{
rρ(f)−1+ϵ

}
+O

{
rρ(g)−1+ϵ

}
+ S(r, f) + S(r, g),

a contradiction with the assumption that n ≥ 4k−ms+10. Therefore we must
have H ≡ 0. Then (

F ′′

F ′ − 2F ′

F − 1

)
−

(
G′′

G′ − GF ′

G− 1

)
= 0

Integrating both sides twice we get,(
1

F − 1

)
=

A

G− 1
+B, (20)

where A(̸= 0) ad B are constants. From (20) it is clear that F,G share 1 CM
and hence they share ”(1, 2)”. Therefore n ≥ 2k + ms + 6 if ms ≤ k + 1 and
n ≥ 4k−ms+ 10 is ms > k+ 1. We now discuss the following cases separately.

Case 1: Let B ̸= 0 and A = B. Then from (20) we get(
1

F − 1

)
=

BG

G− 1
, (21)

If B = −1, then from (21) we obtain FG = 1. Then

(fn (αfm + β)Lc(f))
(k)

(gn (αgm + β)Lc(g))
(k)

= α2

It can be easily seen from the above that N(r, 0; f) = S(r, f) and N(r, 1; f) =
S(r, f). Thus we obtain,

δ(0, f) + δ(1, f) + δ(∞, f) = 3,

which is not possible.

If B ̸= −1, from (21), we see that
1

F
=

BG

(1 +B)G− 1
and so N

(
r, 1

1+B ;G
)
=

N(r, 0;F ).
Using (2), (3), (5) and the second fundamental theorem of Nevanlinna, we deduce
that

T (r,G) ≤N(r, 0;G) +N

(
r,

1

1 +B
;G

)
+N(r,∞;G) + S(r,G)
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≤N(r, 0;F ) +N(r, 0;G) +N(r,∞;G) + S(r,G)

≤Nk+1(r, 0;F1) + T (r,G) +Nk+1(r, 0;G1)− (n+ms+ 1)T (r, g)

+ S(r, g) (22)

If ms ≤ k + 1, from (22) we get,

(n+ms+ 1)T (r, g) ≤(k +ms+ 2) {T (r, f) + T (r, g)}+O
{
rρ(f)−1+ϵ

}
+O

{
rρ(g)−1+ϵ

}
+ S(r, f) + S(r, g)

Thus we obtain,

(n− 2k −ms− 3)T (r, g) {T (r, f) + T (r, g)} ≤O
{
rρ(f)−1+ϵ

}
+O

{
rρ(g)−1+ϵ

}
+ S(r, f) + S(r, g),

a contradiction since n ≥ 2k +ms+ 6. If ms > k + 1, from (21) we get

(n+ms+ 1)T (r, g) ≤(2k + 3) {T (r, f) + T (r, g)}+O
{
rρ(f)−1+ϵ

}
+O

{
rρ(g)−1+ϵ

}
+ S(r, g)

Therefore

(n+ms− 4k − 5)T (r, g) {T (r, f) + T (r, g)} ≤O
{
rρ(f)−1+ϵ

}
+O

{
rρ(g)−1+ϵ

}
+ S(r, f) + S(r, g),

a contradiction since n ≥ 4k −ms+ 10.

Case 2: Let b ̸= 0 and A ̸= 0. Then from (20) we see that ,

F =
(B + 1)G− (B −A+ 1)

BG+ (A−B)

and hence

N

(
r,
B −A+ 1

B + 1
;G

)
= N(r, 0;F ),

Proceeding in manner similar to Case 1 we can get a contradiction.

Case 3: Let B = 0 and A ̸= 0. Then from (20) we have F =
G+A− 1

A
and

G = AF − (A− 1). If A ̸= 1, it follows that N

(
r,
A− 1

A
;F

)
= N(r, 0;G) and

N(r, 1−A;G) = N(r, 0;F )

Then applying Lemma 4.4 we arrive at a contradiction. Therefore A = 1 and
then F = G. That is

(fn (αfm + β)Lc(f))
(k)

= (gn (αgm + β)Lc(g))
(k)

Integrating once we obtain,

(fn (αfm + β)Lc(f))
(k)

= (gn (αgm + β)Lc(g))
(k)

+ ck−1,
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where ck−1 is a constant. If ck−1 ̸= 0, by Lemma 4.4 it follows that n ≤
4k−ms+1 when ms > k+1, a contradiction to the hypothesis. Hence ck−1 = 0.
Repeating the process k times, we deduce that

(fn (αfm + β)Lc(f)) = (gn (αgm + β)Lc(g)) (23)

Set h =
f

L
. If h is a constant, then substituting f = Lh in (23), we deduce that

Lc(g)
((

(αgm)s
(
hn+ms+1 − 1

)
+

(
s

1

)
(αgm)s−1βs−1(hn+m(s−1)+1) + ...+(

s

s

)
βs(hn+1 − 1)

))
which implies h = 1 and hence f ≡ g. If h is not a constant, then it follows
from (23) that f and g satisfy the algebraic equation R(f, g) = 0, where R(f, g)
is given by (1). This completes the proof of Theorem 2.1 □

Theorem 2.2

Proof. Let F,G, F1, G1 be defined as in Theorem 2.1. Then F and G are tran-
scendental meromorphic functions that share (1, 2)∗ except the zeros and poles
of α(z). Let H ̸= 0. The, using (3) for p = 1, (14) and Lemma 4.6, we obtain
from (12)

(n+ms+ 1)T (r, f) ≤N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) +N(r, 0;F )

+N(r,∞;F ) +Nk+2(r, 0;F1) + S(r, f) + S(r, g),

≤Nk+2(r, 0;F1) +Nk+2(r, 0;G1) +Nk+1(r, 0;F1)

+ S(r, f) + S(r, g) (24)

If ms ≥ k + 1, from (24) we obtain,

(n+ms+ 1)T (r, f) ≤(2k + 2ms+ 5)T (r, f) + (k +ms+ 3)T (r, g)

+O
{
rρ(f)−1+ϵ

}
+O

{
rρ(g)−1+ϵ

}
+ S(r, f) + S(r, g)

(25)

Similarly,

(n+ms+ 1)T (r, g) ≤(2k + 2ms+ 5)T (r, g) + (k +ms+ 3)T (r, f)

+O
{
rρ(g)−1+ϵ

}
+O

{
rρ(f)−1+ϵ

}
+ S(r, g) + S(r, f)

(26)

From (25) and (26) we get

(n+ms+ 1) {T (r, f) + T (r, g)} ≤O
{
rρ(f)−1+ϵ

}
+O

{
rρ(g)−1+ϵ

}
+ S(r, f) + S(r, g)



562 Harina P. Waghamore and M. Roopa

Contradicting the fact that n ≥ 3k + 2ms+ 8.
If ms ≥ k + 1, from (24) we get,

(n+ms+ 1)T (r, f) ≤(4k + 8)T (r, f) + (2k + 5)T (r, g) +O
{
rρ(f)−1+ϵ

}
+O

{
rρ(g)−1+ϵ

}
+ S(r, f) + S(r, g) (27)

In a similar manner we obtain,

(n+ms+ 1)T (r, g) ≤(4k + 8)T (r, g) + (2k + 5)T (r, f) +O
{
rρ(g)−1+ϵ

}
+O

{
rρ(f)−1+ϵ

}
+ S(r, g) + S(r, f) (28)

From (27) and (28) we get

(n+ms− 6k − 12) {T (r, f) + T (r, g)} ≤O
{
rρ(f)−1+ϵ

}
+O

{
rρ(g)−1+ϵ

}
+ S(r, f) + S(r, g)

Contradicting to the fact that n ≥ 6k − ms + 13. Thus h ≡ 0 and proof of
the theorem follows from Theorem 2.1. This completes the proof of Theorem
2.2. □

Theorem 2.3

Proof. Let F,G, F1, G1 be as defined in Theorem 2.1. Then F and G are the
transcendental meromorphic functions such that E2)(1, F ) = E2)(1, G) except
for zeros and poles of α(z). Let H ̸= 0. Then by (3), (4) and Lemma 4.7 we
deduce from (12),

(n+ms+ 1)T (r, f) ≤N2(r, 0;G) + 2N(r, 0;F ) +N(r, 0;G) +Nk+2(r, 0;F1)

+ S(r, f) + S(r, g),

≤Nk+2(r, 0;F1) +Nk+2(r, 0;G1) + 2Nk+1(r, 0;F1)

+Nk+1(r, 0;G1) + S(r, f) + S(r, g) (29)

If ms ≤ k + 1, from (29) we get,

(n+ms+ 1)T (r, f) ≤(3k + 3ms+ 7)T (r, f) + (2k + 2ms+ 5)T (r, g)

+O
{
rρ(g)−1+ϵ

}
+O

{
rρ(f)−1+ϵ

}
+ S(r, g) + S(r, f)

(30)

Similarly,

(n+ms+ 1)T (r, g) ≤(3k + 3ms+ 7)T (r, g) + (2k + 2ms+ 5)T (r, f)

+O
{
rρ(f)−1+ϵ

}
+O

{
rρ(g)−1+ϵ

}
+ S(r, f) + S(r, g)

(31)
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Combining (30) and (31) we obtain

(n− 5k − 4ms− 11) {T (r, f) + T (r, g)} ≤O
{
rρ(f)−1+ϵ

}
+O

{
rρ(g)−1+ϵ

}
+ S(r, f) + S(r, g),

a contradiction with the assumption that n ≥ 5k + 4ms+ 12.
If ms ≥ k + 1, from (29) we get

(n+ms+ 1)T (r, f) ≤(6k + 11)T (r, f) + (4k + 8)T (r, g)

+O
{
rρ(f)−1+ϵ

}
+O

{
rρ(g)−1+ϵ

}
+ S(r, f) + S(r, g)

(32)

In similar manner we obtain

(n+ms+ 1)T (r, g) ≤(6k + 11)T (r, g) + (4k + 8)T (r, f)

+O
{
rρ(g)−1+ϵ

}
+O

{
rρ(f)−1+ϵ

}
+ S(r, g) + S(r, f)

(33)

From (32) and (33) we get

(n+ms− 10k − 18) {T (r, f) + T (r, g)} ≤O
{
rρ(f)−1+ϵ

}
+O

{
rρ(g)−1+ϵ

}
+ S(r, f) + S(r, g),

contradicting the fact that n ≥ 10k − ms + 19. Thus H ≡ 0 and the rest of
the theorem follows from the proof of Theorem 2.1. This completes the proof of
Theorem 2.3. □

6. Conclusion

The two non constant transcendental entire functions of the form
(fn (αfm + β)

s Lc (f))
(k)

and (gn (αgm + β)
s Lc (g))

(k)
sharing a small func-

tion, there exists uniqueness between the entire functions in terms of weighted
sharing and relaxed weighted sharing, as well as there conditions.
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