• Title/Summary/Keyword: di/dt

Search Result 70, Processing Time 0.022 seconds

Fabrication and Characterization of 5000V class 4-inch Light Triggered Thyristor (4인치 광점호 Thyristor의 제조 및 특성 분석에 대한 연구)

  • Cho, Doohyung;Won, Jongil;Yoo, Seongwook;Ko, Sangchoon;Park, Jongmoon;Lee, Byungha;Bae, Youngseok;Koo, Insu;Park, Kunsik
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.230-232
    • /
    • 2019
  • Light Triggerd Thyristor (LTT)는 HVDC 및 산업용 스위치 등에 사용되는 대전력 반도체소자이다. 일반적인 Thyristor가 전기적 신호에 의해 trigger 되는 것과는 다르게 LTT는 광신호에 의해 동작하는 소자이다. 본 논문에서는 5,000V, 2,200A 급의 4인치 LTT 소자의 제작 및 전기적인 특성평가 결과를 기술하였다. 4인치 LTT의 구조적인 특징은 전면부 중앙에 광신호가 주입되는 수광부가 위치해 있으며 입력 전류 증폭을 위한 4-단계 증폭 게이트 (gate) 구조를 가지도록 설계하였다. $400{\Omega}{\cdot}cm$ 비저항을 갖는 1mm 두께의 n-형 실리콘 웨이퍼에 boron 이온주입과 열처리 공정으로 약 $30{\mu}m$ 깊이의 p-base를 형성하였으며, 고내압 저지를 위한 edge termination은 VLD (variable lateral doping) 기술을 적용하였다. 제작된 4인치 LTT는 6,500 V의 순방향 항복전압 ($V_{DRM}$) 특성을 나타내었으며, 100V의 어노드전압 ($V_A$)과 20 mA의 게이트전류 ($I_G$)에 의하여 thyristor가 trigger 됨을 확인하였다. 제작한 LTT 소자는 disk형 press-pack 패키지를 진행한 후, LTT의 수광부에 $10{\mu}s$, 50 mW의 900 nm 광 펄스를 조사하여 전류 특성을 평가하였다. LTT 패키지 샘플에 60 Hz 주파수의 광 펄스를 조사한 경우 2,460 A의 순방향 평균전류 ($I_T$)와 $336A/{\mu}s$의 반복전류상승기울기 (repetitive di/dt)에 안정적으로 동작함을 확인하였다. 또한, 펄스 전류 시험의 경우 61.6 kA의 최대 통전 전류 (ITSM, surge current)와 $1,050A/{\mu}s$의 펄스전류 상승 기울기 (di/dt of on-state pulse current)에도 LTT의 손상 없이 동작함을 확인하였다.

  • PDF

Output filter design for conducted EMI reduction of PWM Inverter-fed Induction Motor System

  • Kim Lee-Hun;Won Chung-Yuen;Kim Young-Seok;Choi Se-Wan
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.761-767
    • /
    • 2001
  • In this paper, filtering techniques to reduce the adverse effects of motor leads on high-frequency PWM inverter fed AC motor drives will be examined. The filter was designed to keep the motor terminal from the cable surge impedance to reduce overvoltage reflections, ringing, and the dv/dt, di/dt. Therefore, filtering techniques are investigated to reduce the motor terminal overvoltage, ringing, and EMI noise in inverter fed ac motor drive systems. The output filter is used to limit the rate of the inverter output voltage and reduce EMI(common mode noise) to the motor. The performance of the output filter is evaluated through simulations (PSIM) and experiment on PWM inverter-fed ac motor drive(3phase, 3hp(2.2kw), input voltage 220/380V, induction motor). An experimental PWM drive system reduction of conducted EMI was implemented on an available TMS320C31 microprocessor control board. Finally, experimental results showed that the inverter output filter reduces more CM noise than the LPF(low pass filter) and reduce overvoltage and ringing at the motor terminal.

  • PDF

Soft-Switching PWM Boost Chopper-Fed DC-DC Power Converter with Load Side Auxiliary Passive Resonant Snubber

  • Nakamura, Mantaro;Ogura, Koki;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.161-168
    • /
    • 2004
  • This paper presents a new circuit topology of high-frequency soft switching commutation boost type PWM chopper-fed DC-DC power converter with a loadside auxiliary passive resonant snubber. In the proposed boost type chopper-fed DC-DC power converter circuit operating under a principle of ZCS turn-on and ZVS turn-off commutation, the capacitor and inductor in the auxiliary passive resonant circuit works as the lossless resonant snubber. In addition to this, the voltage and current peak stresses of the power semiconductor devices as well as their di/dt or dv/dt dynamic stress can be effectively reduced by the single passive resonant snubber treated here. Moreover, it is proved that chopper-fed DC-DC power converter circuit topology with an auxiliary passive resonant snubber could solve some problems on the conventional boost type hard switching PWM chopper-fed DC-DC power converter. The simulation results of this converter are illustrated and discussed as compared with the experimental ones. The feasible effectiveness of this soft witching DC-DC power converter with a single passive resonant snubber is verified by the 5kW, 20kHz experimental breadboard set up to be built and tested for new energy utilization such as solar photovoltaic generators and fuel sell generators.

Optimal switching method of SI-Thyristor using internal impedance evaluation (SI-Thyristor의 내부 임피던스 계산을 통한 최적 스위칭 제어)

  • Ju, Heung-Jin;Kim, Bong-Seok;Hwang, Hwui-Dong;Park, Jeong-Ho;Ko, Kwang-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.122-122
    • /
    • 2010
  • A Static Induction Thyristor (SI-Thyristor) has a great potential as power semiconductor switch for pulsed power or high voltage applications with fast turn-on switching time and high switching stress endurance (di/dt, dV/dt). However, due to direct commutation between gate driver and SI-Thyristor, it is difficult to design optimal gate driver at the aspect of impedance matching for fast gate current driving into internal SI-Thyristor. Thus, to penetrate fast positive gate current into steady off state of the SI-Thyristor, it is proposed and proceeded the internal impedance calculation of the SI-Thyristor at steady off state with the gate driver while switching conditions that are indicated applied gate voltage, $V_{GK}$ and applied high voltage across anode and cathode, $V_{AK}$.

  • PDF

Design Criteria of the Auxiliary Resonant Snubber Inverter Using a Load-Side Circuit for Electric Propulsion Drives

  • Song, Byeong-Mun;Jih-Sheng(Jason) Lai;Kwon, Soon-Kurl
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.143-148
    • /
    • 1998
  • The Design criteria of the auxiliary resonant snubber inverter (ARSI) using a load-side circuit are discussed in relation to electric propulsion drives. In this regard, this paper attempts to develop a set of design criteria for the ARSI. First, the switching characteristics of IGBTs under soft-switching mainly in terms of dv/dt/, di/dt and switching losses are discussed and utilized for optimizing the selection of the resonant components in the system. After that, the proper control strategies of ARSIs are analyzed and simulated based on voltage space vector modulations. Later, the design, control and implementation of the auxiliary resonant circuit suitable for industrial products are analyzed and presented. And finally, other factors including power stage layout, packaging and the choice of current sensors are included. The detailed simulation and experimental results will be included based on a laboratory prototype. The proposed design criteria of the ARSI would help the implementation of an electric propulsion drive system.

  • PDF

Synchronous Bidirectional DC-DC Converter Applying Soft-Switching Technique (소프트 스위칭 기법을 적용한 싱크로너스 양방향 DC-DC 컨버터)

  • Lee, Dong-Gyu;Park, Nam-Ju;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.311-318
    • /
    • 2008
  • This paper proposes synchronous bidirectional DC-DC converter applying soft-switching technique. The proposed converter integrates two advantages which are conduction loss minimization and switching loss elimination by applying interleaved synchronous buck and ZVT-cell with a single resonant inductor. ZVS is guaranteed for wide load range in CCM(Continuous Conduction Mode) as well as wide output voltage range by current injection method. Also, reverse recovery effects of body diode can be minimized. In addition, it is possible to significantly reduce diode drop voltage occurred during dead time of conventional synchronous buck converter. The validity of the proposed converter is verified through experimental results.

Codes and standards on computational wind engineering for structural design: State of art and recent trends

  • Luca Bruno;Nicolas Coste;Claudio Mannini;Alessandro Mariotti;Luca Patruno;Paolo Schito;Giuseppe Vairo
    • Wind and Structures
    • /
    • v.37 no.2
    • /
    • pp.133-151
    • /
    • 2023
  • This paper first provides a wide overview about the design codes and standards covering the use of Computational Wind Engineering / Computational Fluid Dynamics (CWE/CFD) for wind-sensitive structures and built environment. Second, the paper sets out the basic assumptions and underlying concepts of the new Annex T "Simulations by Computational Fluid Dynamics (CFD/CWE)" of the revised version "Guide for the assessment of wind actions and effects on structures" issued by the Advisory Committee on Technical Recommendations for Constructions of the Italian National Research Council in February 2019 and drafted by the members of the Special Interest Group on Computational Wind Engineering of the Italian Association for Wind Engineering (ANIV-CWE). The same group is currently advising UNI CT021/SC1 in supporting the drafting of the new Annex K - "Derivation of design parameters from wind tunnel tests and numerical simulations" of the revised Eurocode 1: Actions on structures - Part 1-4: General actions - Wind actions. Finally, the paper outlines the subjects most open to development at the technical and applicative level.

A Study on PFC of Active Clamp ZVS Flyback Converter

  • Choi Tae-Young;Ahn Jeong-Joon;Ryu Dong-Kyun;Lee Woo-Suk;Won Chung-Yuen;Kim Soo-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.611-616
    • /
    • 2001
  • This paper analyzed PFC of active clamp ZVS flyback converter by adding two methods PFC (power Factor Correction) circuit - two-stage and single-stage. The addition of active clamp circuit also provides a mechanism for achieving ZVS of both the primary and auxiliary switches. ZVS also limits the turn off di/dt of the output rectifier, reducing rectifier-switching loss and switching noise, due to diode reverse recovery. As a result, the proposed converters have characteristics of the reduced switching noise and high efficiency in comparison to conventional flyback converter. The simulation and experimental results show that the proposed converter improve the input PF of 300W ZVS flyback converter by adding single-stage, two-stage PFC circuit.

  • PDF

A Study on the PFC(Power Factor Correction) boost converter applied Flying Capacitor Snubber. (Flying Capacitor Snubber를 적용한 PFC(Power Factor Correction) Boost 컨버터에 관한 연구)

  • Kim B.C.;Lee H.S.;Seo J.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.77-80
    • /
    • 2003
  • Switching Mode Power Supply(SMPS) is widely used in many industrial fields. Power factor improvement and harmonic reduction technique are very important in SMPS. In this paper, we propose the circuit applied Flying Capacitor Snubber for improving power factor of boost converter on fast switching state. Snubber circuit consists of a inductor, two diodes and a capacitor. The losses of switching are reduced by inserting a snubber inductor in the series path of the boost switch and the rectifier diode to control the di/dt rate of the rectifier during it's turn-off. Prior to actual experiment, the circuit analysis Is implemented by PSPICE simulation.

  • PDF

Short-circuit Protection for the Series-Connected Switches in High Voltage Applications

  • Tu Vo, Nguyen Qui;Choi, Hyun-Chul;Lee, Chang-Hee
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1298-1305
    • /
    • 2016
  • This paper presents the development of a short-circuit protection mechanism on a high voltage switch (HVS) board which is built by a series connection of semiconductor switches. The HVS board is able to quickly detect and limit the peak fault current before the signal board triggers off a gate signal. Voltage clamping techniques are used to safely turn off the short-circuit current and to prevent overvoltage of the series-connected switches. The selection method of the main devices and the development of the HVS board are described in detail. Experimental results have demonstrated that the HVS board is capable of withstanding a short-circuit current at a rated voltage of 10kV without a di/dt slowing down inductor. The corresponding short-circuit current is restricted to 125 A within 100 ns and can safely turn off within 120 ns.