• 제목/요약/키워드: deteriorating behavior

검색결과 31건 처리시간 0.029초

Development of seismic collapse capacity spectra for structures with deteriorating properties

  • Shu, Zhan;Li, Shuang;Gao, Mengmeng;Yuan, Zhenwei
    • Earthquakes and Structures
    • /
    • 제12권3호
    • /
    • pp.297-307
    • /
    • 2017
  • Evaluation on the sidesway seismic collapse capacity of the widely used low- and medium-height structures is meaningful. These structures with such type of collapse are recognized that behave as inelastic deteriorating single-degree-of-freedom (SDOF) systems. To incorporate the deteriorating effects, the hysteretic loop of the nonlinear SDOF structural model is represented by a tri-linear force-displacement relationship. The concept of collapse capacity spectra are adopted, where the incremental dynamic analysis is performed to check the collapse point and a normalized ground motion intensity measure corresponding to the collapse point is used to define the collapse capacity. With a large amount of earthquake ground motions, a systematic parameter study, i.e., the influences of various ground motion parameters (site condition, magnitude, distance to rupture, and near-fault effect) as well as various structural parameters (damping, ductility, degrading stiffness, pinching behavior, accumulated damage, unloading stiffness, and P-delta effect) on the structural collapse capacity has been performed. The analytical formulas for the collapse capacity spectra considering above influences have been presented so as to quickly predict the structural collapse capacities.

퇴화하는 기계에서의 품질 불량을 고려한 최적 생산시간 결정 (An Optimal Production Run Length in A Deteriorating Machine)

  • 김창현;홍유신
    • 대한산업공학회지
    • /
    • 제22권3호
    • /
    • pp.351-364
    • /
    • 1996
  • This paper presents on EMQ model which determines an optimal production run length in a deteriorating machine. It is assumed that a machine is subject to a random deterioration from an in-control state to an out-of-control state with on arbitrary distribution and thus producing some proportion of defective items. An optimal production run length and a minimum average cost are derived in each of three deteriorating processes; constant, linearly increasing, and exponentially increasing. The model with repair cost is also analyzed. Several mistakes in previous research are found and discussed. Numerical experiments are carried out to see the behavior of the proposed model depending on the cost factors as well as machine parameters, and some interesting behaviors are observed.

  • PDF

생산시스템이 불완전하여 재작업이 요구되는 상황에서의 최적 생산시간 결정에 관한 연구 (Determination of an Optimal Production Run Length in a Deteriorating Production Process with Rework)

  • 김창현
    • 대한산업공학회지
    • /
    • 제40권2호
    • /
    • pp.233-239
    • /
    • 2014
  • This paper presents an extended EMQ model which determines an optimal production run length in an deteriorating production process. The production process is subject to a random deterioration from an in-control state to an out-of-control state and thus producing some proportion of defective items. Defective items produced are re-processed in the rework process to convert them into non-defectives. Through the mathematical modeling, an optimal solution minimizing the average cost per unit time as well as minimum average cost are derived. Numerical experiment is carried out to examine the behavior of the proposed model depending on model parameters.

Hysteretic Behavior of RHS Columns Under Random Cyclic Loading Considering Local Buckling

  • Yamada, Satoshi;Ishida, Takanori;Jiao, Yu
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1761-1771
    • /
    • 2018
  • In this paper, a hysteretic model of rectangular hollow section (RHS) columns that includes the deteriorating range caused by local buckling is proposed. The proposed model consists of the skeleton curve, the Bauschinger part that appears before reaching the maximum strength, the strength increasing part of the deteriorating range, and the unloading part. Of these, the skeleton curve, including the deterioration range caused by local buckling, which is considered to be equivalent to the load-deformation relationship under monotonic loading, is obtained through an analytical method. Bi-linear hysteretic models based on experimental results are applied to the Bauschinger part and the strength increasing part. The elastic stiffness is applied to the unloading part. The proposed model is verified by comparing with experimental results of RHS columns under monotonic and cyclic loading.

퇴화하는 기걔에서의 품질 불량을 고려한 최적 생산시간 결정 (An optimal production run length in a deteriorating machine)

  • 김창현;홍유신
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1996년도 춘계공동학술대회논문집; 공군사관학교, 청주; 26-27 Apr. 1996
    • /
    • pp.290-293
    • /
    • 1996
  • This paper presents an EMQ model which determines an optimal production run length in a deteriorating machine. It is assumed that a machine is subject to a random deterioration from an in-control state to an out-of-control state with an arbitrary distribution and thus producing constant proportion of defective items. An average cost function and an optimal production run length are determined. A mistake in previous model is found and discussed. A mistake in previous model is found and discussed. Numerical experiments are carried out to see the behavior of the proposed model depending on the cost factors as well as machine parameters, and some interesting behaviors are observed.

  • PDF

품질 불량을 고려한 최적 검사계획 및 생산시간 결정 (An Optimal Production Cycle and Inspection Schedules in A Deteriorating Machine)

  • 김창현;홍유신
    • 대한산업공학회지
    • /
    • 제23권2호
    • /
    • pp.261-273
    • /
    • 1997
  • This paper presents an EMQ model which determines an optimal production cycle and inspection schedules simultaneously in a deteriorating machine. It is assumed that a machine is subject to a random deterioration from an in-control state to an out-of-control state and thus producing some proportion of defective items. Optimal solutions and minimum average cost as well as some unique properties are derived. Numerical experiments are carried out to examine the behavior of the proposed model and compare the proposed model to the existing models. Several mistakes in the previous research are found and discussed.

  • PDF

Seismic behavior of Q690 circular HCFTST columns under constant axial loading and reversed cyclic lateral loading

  • Wang, Jiantao;Sun, Qing
    • Steel and Composite Structures
    • /
    • 제32권2호
    • /
    • pp.199-212
    • /
    • 2019
  • This paper presents an investigation on seismic behavior of out-of-code Q690 circular high-strength concrete-filled thin-walled steel tubular (HCFTST) columns made up of high-strength (HS) steel tubes (yield strength $f_y{\geq}690MPa$). Eight Q690 circular HCFTST columns with various diameter-to-thickness (D/t) ratios, concrete cylinder compressive strengths ($f_c$) and axial compression ratios (n) were tested under the constant axial loading and reversed cyclic lateral loading. The obtained lateral load-displacement hysteretic curves, energy dissipation, skeleton curves and ductility, and stiffness degradation were analyzed in detail to reflect the influences of tested parameters. Subsequently, a simplified shear strength model was derived and validated by the test results. Finally, a finite element analysis (FEA) model incorporating a stress triaxiality dependent fracture criterion was established to simulate the seismic behavior. The systematic investigation indicates the following: compared to the D/t ratio and axial compression ratio, improving the concrete compressive strength (e.g., the HS thin-walled steel tube filled with HS concrete) had a slight influence on the ductility but an obvious enhancement of energy dissipation and peak load; the simplified shear strength model based on truss mechanism accurately predicted the shear-resisting capacity; and the established FEA model incorporating steel fracture criterion simulated well the seismic behavior (e.g., hysteretic curve, local buckling and fracture), which can be applied to the seismic analysis and design of Q690 circular HCFTST columns.

탄화규소-강 미끄럼에서의 마모특성 (A Tribological Study of SiC-Steel Couples)

  • 장복기;김윤주
    • 한국세라믹학회지
    • /
    • 제34권1호
    • /
    • pp.7-12
    • /
    • 1997
  • 건조 및 다습한 대기의 무윤활 또는 액체 윤활, 미끄럼 속도 그리고 온도 등 여러 조건 하에서 SiC-강 미끄럼 시 SiC가 나타내는 마모거동에 대하여 조사하였다. 또 SiC의 제조공정이 SiC 마모에 미치는 영향도 미끄럼 속도를 달리하면서 고찰하였다. 무윤활 미끄럼 시 대기 습도는 일종의 윤활제 역할을 하며, 특히 대기가 매우 건조한 조건 하에서 미끄럼 속도는 마모에 큰 영향을 미친다. 그리고 SiC의 제조공정 및 재료표면의 거칠기는 미끄럼 속도의 크기여하에 따라 상이한 마모거동을 초래한다. 특히 온도는 마모를 심화시키는 요인이어서 윤활 미끄럼 조건 하에서도 마모를 크게 가속한다.

  • PDF

고령자 행위 패턴 기반 욕실의 지능형 서비스 패턴 개발 (Smart Services of the Bathroom Reflecting the Behavior Patterns of the Elderly)

  • 이현수;정지예;박성준
    • 한국실내디자인학회논문집
    • /
    • 제22권1호
    • /
    • pp.256-264
    • /
    • 2013
  • A bathroom in house has been stressed not only as a space for physiology and hygiene but also leisure and healthcare. However, the bathroom is the most likely space where an elderly person can have an accident and it is uncomfortable space for them because of their deteriorating physical ability. So the purpose of this study is to help the elderly use their bathroom conveniently by providing smart service. Therefore, we carry out 18 smart service patterns that contain assistive devices and sensors for bathroom. Considering applicability and frequency, from among these service patterns, we suggest 4 service patterns. First is a fall prevention service. This service helps elderly use the bathroom safely at night. Second is a getting ready to go out service. This service helps the situation that elderly use the bathroom after getting up in the morning. Third is a security service in daily life especially before or after meals. And final is a service regarding personal hygiene service after returning home. This service helps to shower or bathe after return home. These services have positive influence in medical expense reductions, good health care and self-reliance of elderly.

위생용 부직포의 키토산/은나노 혼합용액 처리에 의한 역학적 특성 변화 (Changes in Mechanical Properties of Sanitary Nonwoven Fabrics by Chitosan/Nanosilver Mixed Solution Treatment)

  • 배현숙
    • 한국염색가공학회지
    • /
    • 제22권2호
    • /
    • pp.163-172
    • /
    • 2010
  • In order to investigate the changes in mechanical properties of sanitary nonwoven fabrics actually used as a top sheet, the fabric was treated with a mixture of chitosan and nanosilver colloidal solution in accordance with the prescribed ratio. The former is a natural polymer with excellent biocompatibility and the latter can give an additional performance while compensating the weaknesses of chitosan of deteriorating adherence efficiency. It was shown that the bending and shearing characteristics of the chitosan/nanosilver treated fabrics decreased, which helped to make it softer, smoother and more flexible. The shape stability and drapability of the treated fabrics improved. As KES-FB system evaluation showed that Koshi was deduced, and both Numeri and Fukurami were increased. Thereby, the chitosan/nanosilver treated fabrics were smoother to provide elasticity. In the change of hand value compared to chitosan only treatment, a better THV was shown in the fabrics treated with chitosan/nanosilver mixed solution than the fabric treated with chitosan alone.