Browse > Article
http://dx.doi.org/10.12989/scs.2019.32.2.199

Seismic behavior of Q690 circular HCFTST columns under constant axial loading and reversed cyclic lateral loading  

Wang, Jiantao (Department of Civil Engineering, Xi'an Jiaotong University)
Sun, Qing (Department of Civil Engineering, Xi'an Jiaotong University)
Publication Information
Steel and Composite Structures / v.32, no.2, 2019 , pp. 199-212 More about this Journal
Abstract
This paper presents an investigation on seismic behavior of out-of-code Q690 circular high-strength concrete-filled thin-walled steel tubular (HCFTST) columns made up of high-strength (HS) steel tubes (yield strength $f_y{\geq}690MPa$). Eight Q690 circular HCFTST columns with various diameter-to-thickness (D/t) ratios, concrete cylinder compressive strengths ($f_c$) and axial compression ratios (n) were tested under the constant axial loading and reversed cyclic lateral loading. The obtained lateral load-displacement hysteretic curves, energy dissipation, skeleton curves and ductility, and stiffness degradation were analyzed in detail to reflect the influences of tested parameters. Subsequently, a simplified shear strength model was derived and validated by the test results. Finally, a finite element analysis (FEA) model incorporating a stress triaxiality dependent fracture criterion was established to simulate the seismic behavior. The systematic investigation indicates the following: compared to the D/t ratio and axial compression ratio, improving the concrete compressive strength (e.g., the HS thin-walled steel tube filled with HS concrete) had a slight influence on the ductility but an obvious enhancement of energy dissipation and peak load; the simplified shear strength model based on truss mechanism accurately predicted the shear-resisting capacity; and the established FEA model incorporating steel fracture criterion simulated well the seismic behavior (e.g., hysteretic curve, local buckling and fracture), which can be applied to the seismic analysis and design of Q690 circular HCFTST columns.
Keywords
Q690 circular HCFTST columns; seismic behavior; deteriorating behavior; simplified shear strength model; stress triaxiality dependent fracture criterion;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Elremaily, A. and Azizinamini, A. (2002), "Behavior and strength of circular concrete-filled tube columns", J. Constr. Steel Res., 58(12), 1567-1591. https://doi.org/10.1016/S0143-974X(02)00005-6   DOI
2 Fam, A., Qie, F.S. and Rizkalla, S. (2004), "Concrete-filled steel tubes subjected to axial compression and lateral cyclic loads", J. Struct. Eng., 130(4), 631-640. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:4(631)   DOI
3 GB 50010-2010 (2010), Code for design of concrete structures, Professional Standard of the People's Republic of China; Beijing, China.
4 GB 50936-2014 (2014), Technical code for concrete filled steel tubular structures, Professional Standard of the People's Republic of China; Beijing, China.
5 Gupta, V.K., Nigam, A.K. and Dey, A. (1982), "Orthogonal main-effect plans for asymmetrical factorials", Technometrics, 24(2), 135-137.   DOI
6 Hajjar, J.F., Gourley, B.C. and Olson, M.C. (1997), "A cyclic nonlinear model for concrete-filled tubes. II: verification", J. Struct. Eng., 123(6), 745-754. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:6(745)   DOI
7 ANSI/AISC 360-16 (2016), Specification for structural steel buildings, American National Standards Institute; Chicago, IL, USA.
8 Boyd, P.F., Cofer, W.F. and Mclean, D.I. (1995), "Seismic performance of steel-encased concrete columns under flexural loading", ACI Struct. J., 92(3), 355-364.
9 Chen, S.J., Yang, K.C., Lin, K.M. and Wang, C.D. (2011), "Seismic behavior of ductile rectangular composite bridge piers", Earthq. Eng. Struct. Dyn., 40(1), 21-34. https://doi.org/10.1002/eqe.1018   DOI
10 Han, L.H. and Yang, Y.F. (2005), "Cyclic performance of concrete-filled steel CHS columns under flexural loading", J. Constr. Steel Res., 61(4), 423-452. https://doi.org/10.1016/j.jcsr.2004.10.004   DOI
11 Han, L.H., Huang, H., Tao, Z. and Zhao, X.L. (2006), "Concrete-filled double skin steel tubular (CFDST) beam-columns subjected to cyclic bending", Eng. Struct., 28(12), 1698-1714. https://doi.org/10.1016/j.engstruct.2006.03.004   DOI
12 Han, L.H., Li, W. and Bjorhovde, R. (2014), "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members", J. Constr. Steel Res., 100, 211-228. https://doi.org/10.1016/j.jcsr.2014.04.016   DOI
13 Cheng, C.S. (1995), "Some projection properties of orthogonal arrays", Ann. Stat., 23(4), 1223-1233.   DOI
14 Zhang, G.W., Xiao, Y. and Kunnath, S. (2009), "Low-cycle fatigue damage of circular concrete-filled-tube columns", ACI Struct. J., 106(2), 151-159.
15 Hedayat, A.S., Sloane, N.J.A. and Stufken, J. (2012), Orthogonal Arrays: Theory and Applications, Springer Science & Business Media, Berlin, Germany.
16 Huang, Z., Jiang, L.Z., Chen, Y.F., Luo, Y. and Zhou, W.B. (2018), "Experimental study on the seismic performance of concrete filled steel tubular laced columns", Steel Compos. Struct., Int. J., 26(6), 719-731. https://doi.org/10.12989/scs.2018.26.6.719
17 Varma, A.H., Ricles, J.M., Sause, R. and Lu, L.W. (2004), "Seismic behavior and design of high-strength square concrete-filled steel tube beam columns", J. Struct. Eng., 130(2), 169-179. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(169)   DOI
18 Wu, C.J. and Hamada, M.S. (2011), Experiments: Planning, Analysis, and Optimization, John Wiley & Sons, Hoboken, USA.
19 Xue, J., Zhou, C. and Lin, J. (2018), "Seismic performance of mixed column composed of square CFST column and circular RC column in Chinese archaized buildings", Steel Compos. Struct., Int. J., 29(4), 451-464. https://doi.org/10.12989/scs.2018.29.4.451
20 Yu, H.L. and Jeong, D.Y. (2010), "Application of a stress triaxiality dependent fracture criterion in the finite element analysis of unnotched Charpy specimens", Theor. Appl. Fract. Mech., 54(1), 54-62. https://doi.org/10.1016/j.tafmec.2010.06.015   DOI
21 Zhong, S.T. (2003), The Concrete-filled Steel Tubular Structures, Tsinghua University Press, Beijing, China.
22 Zhou, X. and Liu, J. (2010), "Seismic behavior and shear strength of tubed RC short columns", J. Constr. Steel Res., 66(3), 385-397. https://doi.org/10.1016/j.jcsr.2009.10.011   DOI
23 Jiang, J.J. and Lu, X.Z. (2005), Finite Element Analysis of Concrete Structures, Tsinghua University Press, Beijing, China.
24 Inai, E., Mukai, A., Kai, M., Tokinoya, H., Fukumoto, T. and Mori, K. (2004), "Behavior of concrete-filled steel tube beam columns", J. Struct. Eng., 130(2), 189-202. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(189)   DOI
25 Javidan, F., Heidarpour, A., Zhao, X.L. and Minkkinen, J. (2016), "Application of high strength and ultra-high strength steel tubes in long hybrid compressive members: Experimental and numerical investigation", Thin-Wall. Struct., 102, 273-285. https://doi.org/10.1016/j.tws.2016.02.002   DOI
26 Javidan, F., Heidarpour, A., Zhao, X.L. and Al-Mahaidi, R. (2018), "Structural coupling mechanism of high strength steel and mild steel under multiaxial cyclic loading", Steel Compos. Struct., Int. J., 27(2), 229-242. https://doi.org/10.12989/scs.2018.27.2.229
27 Kanvinde, A.M. and Deierlein, G.G. (2006), "The void growth model and the stress modified critical strain model to predict ductile fracture in structural steels", J. Struct. Eng., 132(12), 1907-1918. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:12(1907)   DOI
28 Kim, J.H. and Mander, J.B. (2007), "Influence of transverse reinforcement on elastic shear stiffness of cracked concrete elements", Eng. Struct., 29(8), 1798-1807. https://doi.org/10.1016/j.engstruct.2006.10.001   DOI
29 Kowalsky, M.J. and Priestley, M.N. (2000), "Improved analytical model for shear strength of circular reinforced concrete columns in seismic regions", ACI Struct. J., 97(3), 388-396.
30 Lee, J. and Fenves, G.L. (1998), "Plastic-damage model for cyclic loading of concrete structures", J. Eng. Mech., 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)   DOI
31 Li, T.J., Li, G.Q., Chan, S.L. and Wang, Y.B. (2016), "Behavior of Q690 high-strength steel columns: Part 1: Experimental investigation", J. Constr. Steel Res., 123, 18-30. https://doi.org/10.1016/j.jcsr.2016.03.026   DOI
32 Li, C., Hao, H. and Bi, K. (2017), "Numerical study on the seismic performance of precast segmental concrete columns under cyclic loading", Eng. Struct. 148, 373-386. https://doi.org/10.1016/j.engstruct.2017.06.062   DOI
33 Liao, F.F., Li, W.C. and Zhou, T.H. (2016), "Experimental study on fracture characteristics of Q460D high strength steel and calibration of fracture criterion", J. Xi'an Univ. Arch. Tech. (Natural Science Edition), 48(3), 362-370.
34 Ma, D.Y., Han, L.H., Li, W. and Zhao, X.L. (2017), "Seismic Performance of concrete-encased CFST piers: analysis", J. Bridge. Eng., 23(1), 04017119. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001157
35 Marson, J. and Bruneau, M. (2004), "Cyclic testing of concrete-filled circular steel bridge piers having encased fixed-based detail", J. Bridge Eng., 9(1), 14-23. https://doi.org/10.1061/(ASCE)1084-0702(2004)9:1(14)   DOI
36 Nakanishi, K., Kitada, T. and Nakai, H. (1999), "Experimental study on ultimate strength and ductility of concrete filled steel columns under strong earthquake", J. Constr. Steel Res., 51(3), 297-319. https://doi.org/10.1016/S0143-974X(99)00006-1   DOI
37 Portoles, J.M., Serra, E. and Romero, M.L. (2013), "Influence of ultra-high strength infill in slender concrete-filled steel tubular columns", J. Constr. Steel Res., 86, 107-114. https://doi.org/10.1016/j.jcsr.2013.03.016   DOI
38 Sakino, K., Nakahara, H., Morino, S. and Nishiyama, I. (2004), "Behavior of centrally loaded concrete-filled steel-tube short columns", J. Struct. Eng., 130(2), 180-188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180)   DOI
39 Priestley, M.N., Seible, F., Xiao, Y. and Verma, R. (1994), "Steel jacket retrofitting of reinforced concrete bridge columns for enhanced shear strength-part 1: Theoretical considerations and test design", ACI Struct. J., 91(4), 394-405.
40 Sakino, K. (1981), "Hysteretic behavior of concrete filled squara steel tubular beam-columns failed in flexure", Trans. Jpn. Concr. Inst., 3, 439-446.
41 Skalomenos, K.A., Hayashi, K., Nishi, R., Inamasu, H. and Nakashima, M. (2016), "Experimental behavior of concrete-filled steel tube columns using ultrahigh-strength steel", J. Struct. Eng., 142(9), 04016057. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001513   DOI
42 Usami, T. and Ge, H. (1994), "Ductility of concrete-filled steel box columns under cyclic loading", J. Struct. Eng., 120(7), 2021-2040. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:7(2021)   DOI
43 Varma, A.H., Ricles, J.M., Sause, R. and Lu, L.W. (2002), "Seismic behavior and modeling of high-strength composite concrete-filled steel tube (CFT) beam-columns", J. Constr. Steel Res., 58(5-8), 725-758. https://doi.org/10.1016/S0143-974X(01)00099-2   DOI
44 Zhu, W., Jia, J. and Zhang, J. (2017), "Experimental research on seismic behavior of steel reinforced high-strength concrete short columns", Steel Compos. Struct., Int. J., 25(5), 603-615. https://doi.org/10.12989/scs.2017.25.5.603
45 Zhou, T., Chen, Z. and Liu, H. (2012), "Seismic behavior of special shaped column composed of concrete filled steel tubes", J. Constr. Steel Res., 75, 131-141. https://doi.org/10.1016/j.jcsr.2012.03.015   DOI
46 Zhou, T.H., Li, W.C., Guan, Y. and Bai, L. (2014), "Damage analysis of steel frames under cyclic load based on stress triaxiality", Eng. Mech., 31(7), 146-155.
47 Zhu, W., Jia, J., Gao, J. and Zhang, F. (2016), "Experimental study on steel reinforced high-strength concrete columns under cyclic lateral force and constant axial load", Eng. Struct., 125, 191-204. https://doi.org/10.1016/j.engstruct.2016.07.018   DOI