Development of seismic collapse capacity spectra for structures with deteriorating properties |
Shu, Zhan
(Department of Structural Engineering, Tongji University)
Li, Shuang (Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology) Gao, Mengmeng (Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology) Yuan, Zhenwei (Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology) |
1 | Williamson, E.B. (2003), "Evaluation of damage and P- effects for systems under earthquake excitation", J. Struct. Eng., ASCE, 129(8), 1036-1046. DOI |
2 | Zareian, F. and Krawinkler, H. (2010), "Structural system parameter selection based on collapse potential of buildings in earthquakes", J. Struct. Eng., ASCE, 136(8), 933-943. DOI |
3 | Adam, C. and Jager, C. (2011), "Seismic induced global collapse of non-deteriorating frame structures", Computational Methods in Earthquake Engineering, eds., Papadrakakis, M., Fragiadakis, M. and Lagaros, N.D., Springer, Dordrecht, 21-40. |
4 | Adam, C. and Jager, C. (2012), "Seismic collapse capacity of basic inelastic structures vulnerable to the P-delta effect", Earthq. Eng. Struct. Dyn., 41(4), 775-793. DOI |
5 | Alavi, B. and Krawinkler, H. (2004), "Behavior of momentresisting frame structures subjected to near-fault ground motions", Earthq. Eng. Struct. Dyn., 33(6), 687-706. DOI |
6 | Amara, F., Bosco, M., Marino, E.M. and Rossi, P.P. (2014), "An accurate strength amplification factor for the design of SDOF systems with P- effects", Earthq. Eng. Struct. Dyn., 43(4), 589-611. DOI |
7 | Ayoub, A. and Chenouda, M. (2009), "Response spectra of degrading structural systems", Eng. Struct., 31(7), 1393-1402. DOI |
8 | Dimakopoulou, V., Fragiadakis, M. and Spyrakos, C. (2013), "Influence of modeling parameters on the response of degrading systems to near-field ground motions", Eng. Struct., 53, 10-24. DOI |
9 | Borekci, M., Kircil, M.S. and Ekiz, I. (2014), "Collapse period of degrading SDOF systems", Earthq. Eng. Eng. Vib., 13(4), 681-694. DOI |
10 | Chopra, A.K. and Chintanapakdee, C. (2004), "Inelastic deformation ratios for design and evaluation of structures: Single-degree-of freedom bilinear systems", J. Struct. Eng., ASCE, 130(7), 1309-1319. DOI |
11 | Domizio M., Ambrosini D. and Curadelli O. (2015), "Experimental and numerical analysis to collapse of a framed structure subjected to seismic loading", Eng. Struct., 82, 22-32. DOI |
12 | Esfahanian, A. and Aghakouchak, A.A. (2015), "On the improvement of inelastic displacement demands for near-fault ground motions considering various faulting mechanisms", Earthq. Struct., 9(3), 573-698. |
13 | FEMA (2000), "Recommended seismic design criteria for new steel moment-frame buildings", Report # 350, SAC Joint Venture, Federal Emergency Management Agency, Washington, DC. |
14 | Han, S.W., Ha, S.J., Moon, K.H. and Shin, M. (2014), "Improved capacity spectrum method with inelastic displacement ratio considering higher mode effects", Earthq. Struct., 7(4), 587-607. DOI |
15 | Ibarra, L.F. and Krawinkler, H. (2011), "Variance of collapse capacity of SDOF systems under earthquake excitations", Earthq. Eng. Struct. Dyn., 40(12), 1299-1314. DOI |
16 | Libel, A.B., Haselton, C.B. and Deierlein G.G. (2011), "Seismic collapse safety of reinforced concrete buildings. II: Comparative assessment of nonductile and ductile moment frames", J. Struct. Eng., ASCE, 137(4), 492-502. DOI |
17 | Jager, C. and Adam, C. (2013), "Influence of collapse definition and near-field effects on collapse capacity spectra", J. Earthq. Eng., 17(6), 859-878. DOI |
18 | Baker, J.W. (2007), "Quantitative classification of near-fault ground motions using wavelet analysis", Bull. Seismol. Soc. Am., 97(5), 1486-1501. DOI |
19 | Katsanos, E.I. and Sextos, A.G. (2015), "Inelastic spectra to predict period elongation of structures under earthquake loading", Earthq. Eng. Struct. Dyn., 44(11), 1765-1782. DOI |
20 | Lavan, O., Sivaselvan, M.V., Reinhorn A.M. and Dargush G.F. (2009), "Progressive collapse analysis through strength degradation and fracture in the Mixed Lagrangian Formulation", Earthq. Eng. Struct. Dyn., 38(13), 1483-1504. DOI |
21 | Li, S. and Xie, L.L. (2007), "Effects of hanging wall and forward directivity in the 1999 Chi-Chi earthquake on inelastic displacement response of structures", Earthq. Eng. Eng. Vib., 6(1), 77-84. DOI |
22 | Malhotra, P.K. (1999), "Response of buildings to near-field pulselike ground motions", Earthq. Eng. Struct. Dyn., 28(11), 1309-1326. DOI |
23 | Miranda, E. and Akkar, S.D. (2003), "Dynamic instability of simple structural systems", J. Struct. Eng., ASCE, 129(12), 1722-1726. DOI |
24 | OpenSees (2015), Open System for Earthquake Engineering Simulation; Pacific Earthquake Engineering Research Center, University of California, Berkeley. http://opensees.berkeley.edu/wiki/index.php/Hysteretic_Material. |
25 | Thermou, G.E., Elnashai, A.S. and Pantazopoulou, S.J. (2012), "Retrofit Yield spectra - a practical device in seismic rehabilitation", Earthq. Struct., 3(2), 141-168. DOI |
26 | Rahgozar, N., Moghadam, A.S. and Aziminejad A. (2016), "Inelastic displacement ratios of fully self-centering controlled rocking systems subjected to near-source pulse-like ground motions", Eng. Struct., 108, 113-133. DOI |
27 | Riddell, R., Garcia, J.E. and Garces, E. (2002), "Inelastic deformation response of SDOF systems subjected to earthquakes", Earthq. Eng. Struct. Dyn., 31(4), 515-538. DOI |
28 | Shi, W., Lu, X.Z., Guan, H. and Ye, L.P. (2014), "Development of seismic collapse capacity spectra and parametric study", Adv. Struct. Eng., 17(9), 1241-1255. DOI |
29 | Sivaselvan, M.V. (2013), "Hysteretic models with stiffness and strength degradation in a mathematical programming format", Int. J. Non-Lin. Mech., 51, 10-27. DOI |
30 | Sivaselvan, M.V. and Reinhorn, A.M. (2000), "Hysteretic models for deteriorating inelastic structures", J. Eng. Mech., ASCE, 126(6), 633-640. DOI |
31 | Vamvatsikos, D. and Cornell C.A. (2002), "Incremental dynamic analysis", Earthq. Eng. Struct. Dyn., 31(3), 491-514. DOI |
32 | Vian, D. and Bruneau, M. (2003), "Tests to structural collapse of single degree of freedom frames subjected to earthquake excitation", J. Struct. Eng., ASCE, 129(12), 1676-1685. DOI |
33 | Villaverde, R. (2007), "Methods to assess the seismic collapse capacity of building structures: State of the art", J. Struct. Eng., ASCE, 133(1), 57-66. DOI |