• Title/Summary/Keyword: design-for-testability(DFT)

Search Result 17, Processing Time 0.022 seconds

A New Automatic Compensation Network for System-on-Chip Transceivers

  • Ryu, Jee-Youl;Noh, Seok-Ho
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.371-380
    • /
    • 2007
  • This paper proposes a new automatic compensation network (ACN) for a system-on-chip (SoC) transceiver. We built a 5 GHz low noise amplifier (LNA) with an on-chip ACN using 0.18 ${\mu}m$ SiGe technology. This network is extremely useful for today's radio frequency (RF) integrated circuit devices in a complete RF transceiver environment. The network comprises an RF design-for-testability (DFT) circuit, capacitor mirror banks, and a digital signal processor. The RF DFT circuit consists of a test amplifier and RF peak detectors. The RF DFT circuit helps the network to provide DC output voltages, which makes the compensation network automatic. The proposed technique utilizes output DC voltage measurements and these measured values are translated into the LNA specifications such as input impedance, gain, and noise figure using the developed mathematical equations. The ACN automatically adjusts the performance of the 5 GHz LNA with the processor in the SoC transceiver when the LNA goes out of the normal range of operation. The ACN compensates abnormal operation due to unusual thermal variation or unusual process variation. The ACN is simple, inexpensive and suitable for a complete RF transceiver environment.

  • PDF

A Programmable Compensation Circuit for System-on-Chip Application

  • Choi, Woo-Chang;Ryu, Jee-Youl
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.3
    • /
    • pp.198-206
    • /
    • 2011
  • This paper presents a new programmable compensation circuit (PCC) for a System-on-Chip (SoC). The PCC is integrated with $0.18-{\mu}m$ BiCMOS SiGe technology. It consists of RF Design-for-Testability (DFT) circuit, Resistor Array Bank (RAB) and digital signal processor (DSP). To verify performance of the PCC we built a 5-GHz low noise amplifier (LNA) with an on-chip RAB using the same technology. Proposed circuit helps it to provide DC output voltages, hence, making the RF system chain automatic. It automatically adjusts performance of an LNA with the processor in the SoC when it goes out of the normal range of operation. The PCC also compensates abnormal operation due to the unusual PVT (Process, Voltage and Thermal) variations in RF circuits.

Programmable Compensation Circuit for GHz Band Devices (GHz 대역 소자를 위한 프로그램 가능 보상 회로)

  • Ryu, Jee-Youl;Noh, Seok-Ho;Kim, Sung-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.673-675
    • /
    • 2011
  • 본 논문은 GHz 대역 소자 응용을 위한 프로그램 가능 보상 회로를 제안한다. 이러한 회로는 5.2GHz대에서 동작하는 고주파 회로의 칩 제작과정에서 예기치 않게 발생한 미세한 PVT (공정, 전압, 온도) 변동을 검출하여 미세 변동된 회로 성능 변수들을 자동으로 보상한다. 자동으로 보상 가능한 고주파 회로 성능 변수들은 중요한 요소인 입력 임피던스, 전압이득과 잡음지수를 포함한다. 이러한 회로는 미세 변동을 자동으로 보상할 수 있도록 고주파 신호를 직류 신호로 변환하는 DFT (Design-for-Testability) 회로를 포함한다.

  • PDF

Automatic Compensation System for RF System-On-Chip Applications (고주파 시스템-온-칩 응용을 위한 자동 보상 시스템)

  • Ryu, Jee-Youl;Noh, Seok-Ho;Kim, Sung-Woo;Park, Seung-Hun;Lee, Jung-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.718-721
    • /
    • 2010
  • 본 논문은 고주파 시스템-온-칩 응용을 위한 자동 보상 시스템을 제안한다. 이러한 시스템은 고주파 회로 칩 제작과정에서 예기치 않게 발생한 미세한 PVT(공정, 전압, 온도) 변동으로 인한 회로 성능 변수들의 미세변동을 검출하여 이를 자동으로 보상한다. 자동으로 보상 가능한 고주파 회로 성능 변수들은 중요한 요소인 입력 임피던스, 전압이득 및 잡음지수를 포함한다. 이러한 시스템은 미세 변동을 자동으로 보상할 수 있도록 고주파 신호를 직류 신호로 변환하는 DFT(Design-for-Testability) 회로를 포함한다.

  • PDF

A Concurrent Testing of DRAMs Utilizing On-Chip Networks (온칩네트워크를 활용한 DRAM 동시 테스트 기법)

  • Lee, Changjin;Nam, Jonghyun;Ahn, Jin-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.82-87
    • /
    • 2020
  • In this paper, we introduce the novel idea to improve the B/W usage efficiency of on-chip networks used for TAM to test multiple DRAMs. In order to avoid the local bottleneck of test packets caused by an ATE, we make test patterns using microcode-based instructions within ATE and adopt a test bus to transmit test responses from DRAM DFT (Design for Testability) called Test Generator (TG) to ATE. The proposed test platform will contribute to increasing the test economics of memory IC industry.

Design on the efficient BILBO for BIST allocation of ASIC (ASIC의 BIST 할당을 위한 효과적인 BILBO 설계)

  • 이강현
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.9
    • /
    • pp.53-60
    • /
    • 1997
  • In this paper, an efficient BILBO(named EBILBO) is proposed for batch testing application when a BIST (built-in self test) circuit is implemented on ASIC. In a large and complex circuit, the proposed algorithm of batch testing has one pin-count that can easily control 4 test modes in the normal speed of circuit operation. For the implementation of the BIST cifcuit, the test patern needed is generated by PRTPG(pseudo-random test pattern generator) and the ouput is observed by proposed algorithm is easily modified, such as the modelling of test pattern genration, signature EBILBO area and performance of the implemented BIST are evaluated using ISCAS89 benchmark circuits. As a resutl, in a circuit above 600 gates, it is confirmed that test patterns are genrated flexibly about 500K as EBILBO area is 59%, and the range of fault coverage is from 88.3% to 100%. And the optimized operation frequency of EBILBO designed and the area are 50MHz and 150K respectively. On the BIST circit of the proposed batch testing, the test mode of EBILBO is able to execute as realtime that has te number of s$\^$+/n$\^$+/(2s/2p-1) clocks simultaneously with the normal mode of circuit operation. Also the proposed algorithm is made of the library with VHDL coding thus, it will be widely applied to DFT (design for testability) that satisfies the design and test field.

  • PDF

Test Time Reduction for BIST by Parallel Divide-and-Conquer Method (분할 및 병렬 처리 방법에 의한 BIST의 테스트 시간 감소)

  • Choe, Byeong-Gu;Kim, Dong-Uk
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.6
    • /
    • pp.322-329
    • /
    • 2000
  • BIST(Built-in Self Test) has been considered as the most promising DFT(design-for-test) scheme for the present and future test strategy. The most serious problem in applying BIST(Built-in Self Test) into a large circuit is the excessive increase in test time. This paper is focused on this problem. We proposed a new BIST construction scheme which uses a parallel divide-and-conquer method. The circuit division is performed with respect to some internal nodes called test points. The test points are selected by considering the nodal connectivity of the circuit rather than the testability of each node. The test patterns are generated by only one linear feedback shift register(LFSR) and they are shared by all the divided circuits. Thus, the test for each divided circuit is performed in parallel. Test responses are collected from the test point as well as the primary outputs. Even though the divide-and-conquer scheme is used and test patterns are generated in one LFSR, the proposed scheme does not lose its pseudo-exhaustive property. We proposed a selection procedure to find the test points and it was implemented with C/C++ language. Several example circuits were applied to this procedure and the results showed that test time was reduced upto 1/2151 but the increase in the hardware overhead or the delay increase was not much high. Because the proposed scheme showed a tendency that the increasing rates in hardware overhead and delay overhead were less than that in test time reduction as the size of circuit increases, it is expected to be used efficiently for large circuits as VLSI and ULSI.

  • PDF