• Title/Summary/Keyword: derivations

Search Result 464, Processing Time 0.029 seconds

ON LIE IDEALS OF PRIME RINGS WITH GENERALIZED JORDAN DERIVATION

  • Golbasi, Oznur;Aydin, Neset
    • East Asian mathematical journal
    • /
    • v.21 no.1
    • /
    • pp.21-26
    • /
    • 2005
  • The purpose of this paper is to show that every generalized Jordan derivation of prime ring with characteristic not two is a generalized derivation on a nonzero Lie ideal U of R such that $u^2{\in}U\;for\;{\forall}u{\in}U$ which is a generalization of the well-known result of I. N. Herstein.

  • PDF

LINEAR JORDAN DERIVATIONS ON NONCOMMUTATIVE BANACH ALGEBRAS

  • Byun, Sang-Hoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.11 no.1
    • /
    • pp.115-121
    • /
    • 1998
  • The purpose of this paper is to prove the following result: Let A be a noncom mutative Banach algebra. Suppose that there exist continuous linear Jordan derivations $D:A{\rightarrow}A$, $G:A{\rightarrow}A$ such that [$D^2(x)+G(x)$, $x^n$] lies in the Jacobson radical of A for all $x{\in}A$. Then $D(A){\subset}rad(A)$ and $G(A){\subset}rad(A)$.

  • PDF

ON THE IMAGE OF DERIVATIONS

  • Bae, Jae-Hyeong
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.3
    • /
    • pp.937-942
    • /
    • 1999
  • In this paper we will show that if [G($\chi$),$\chi$] D($\chi$) and [D($\chi$), G($\chi$)] lie in the nil radical of A for all $\chi$$\in$A, then either D or G maps A into the radical where D and G are derivations on a Banach algebra A.

CONTINUOUS DERIVATIONS OF NONCOMMUTATIVE BANACH ALGEBRA

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.319-327
    • /
    • 2000
  • In this paper we investigate the conditions for derivations under which the Singer-Wermer theorem is true for noncommutative Banach algebra A such that either [[D(x),xD(x)] ${\in}$ rad(A) for all $x{\in}$A or $D(x)^2$x+xD(x))$^2$${\in}$rad(A) for all $x{\in}$A, where rad(A) is the Jacobson radical of A, then $D(A){\subseteq}$rad(A).

APPROXIMATE BI-HOMOMORPHISMS AND BI-DERIVATIONS IN C*-TERNARY ALGEBRAS

  • Bae, Jae-Hyeong;Park, Won-Gil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.195-209
    • /
    • 2010
  • In this paper, we prove the generalized Hyers-Ulam stability of bi-homomorphisms in $C^*$-ternary algebras and of bi-derivations on $C^*$-ternary algebras for the following bi-additive functional equation f(x + y, z - w) + f(x - y, z + w) = 2f(x, z) - 2f(y, w). This is applied to investigate bi-isomorphisms between $C^*$-ternary algebras.